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CHAPTER ELEVEN

Section 11.1E

5. Let Γ ∪ {(∃x)P} be a quantificationally consistent set of sentences,
none of which contains the constant a. Then there is some interpretation I on
which every member of Γ ∪ {(∃x)P} is true. Because (∃x)P is true on I, we
know that for any variable assignment d, there is a member u of the UD such
that d[u�x] satisfies P on I. Let I� be the interpretation that is just like I except
that I�(a) � u. Because a does not occur in Γ ∪ {(∃x)P}, it follows from 11.1.7
that every member of Γ ∪ {(∃x)P} is true on I�.

On our assumption that d[u�x] satisfies P on I, it follows from 11.1.6
that d[u�x] satisfies P on I�. By the way that we have constructed I�, u is I�(a),
and so d[u�x] is d[I�(a)�x]. From result 11.1.1, we therefore know that d
satisfies P(a�x) on I�. By 11.1.3, then, every variable assignment on I� satisfies
P(a�x), and so it is true on I�.

Every member of Γ ∪ {(∃x)P, P(a�x)} being true on I�, we conclude
that the extended set is quantificationally consistent.

6. Assume that I is an interpretation on which each member of the
UD is assigned to at least one individual constant and that every substitution
instance of (∀x)P is true on I. Now (∀x)P is true on I if every variable assign-
ment satisfies (∀x)P and, by 11.1.3, if some variable assignment d satisfies
(∀x)P. The latter is the case if for every member u of the UD, d[u�x] satis-
fies P. Consider an arbitrary member u of the UD. By our assumption, u � I(a)
for some individual constant a. Also by assumption, P(a�x) is true on I—so d
satisfies P(a�x). By 11.1.1, then, d[I(a)/x], which is d[u�x], satisfies P. We con-
clude that for every member u of the UD, d[u�x] satisfies P, that d therefore
satisfies (∀x)P, and that (∀x)P is true on I.

Section 11.2E

4. To prove 11.2.5, we will make use of the following:

11.2.6. Let t1 and t2 be closed terms such that denI,d(t1) � denI,d(t2),
and let t be a term that contains t1. Then for any variable assignment
d, and any term t(t2��t1) that results from replacing one or more occur-
rences of t1 in t with t2, denI,d(t(t2��t1)) � denI,d(t).

Proof. If t1 is t, then t(t2��t1) must be t2, and by assumption
denI,d(t1) � denI,d(t2).

For the case where t contains but is not identical to t1, we shall
prove 11.2.6 by mathematical induction on the number of functors
that occur in t—since t must be a complex term in this case.
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Basis clause: If t contains one functor, then for any variable assignment
d, and any term t(t2��t1) that results from replacing one or more
occurrences of t1 in t with t2, denI,d(t(t2��t1)) � denI,d(t).
Proof of basis clause: t has the form f (t1�, . . . , tn� ), where each t�i
is a variable or constant. In this case, one or more of the ti’s must
be t1 and has been replaced by t2 to form f (t1�, . . . , tn� )(t2��t1)
and the remaining t i’s are unchanged. In the former cases, by
assumption we have denI,d(t1) � denI,d(t2). So the denotations of
the arguments at the corresponding positions in f (t1�, . . . , t n� ) and
f (t1�, . . . , tn� )(t2��t1) are identical, and therefore denI,d( f (t1�, . . . , tn� )) �
denI,d ( f (t1�, . . . , tn� )(t2��t1)).
Inductive step: If 11.2.6 holds for every term t that contains k or fewer
functors, then it also holds for every term t that contains k � 1
functors.
Proof of inductive step: Assume the inductive hypothesis for an arbi-
trary integer k. We must show that 11.2.6 holds for every term t that
contains k � 1 functors. In this case, t has the form f (t1�, . . . , tn� ),
where each t�i contains k or fewer functors and one or more of the t i’s
that is identical to or contains t1 has had one or more occurrences of
t1 replaced by t2 to form f (t1�, . . . , tn� )(t2��t1) and the remaining t i’s
are unchanged. In the former cases, it follows form the inductive
hypothesis that the denotations of the arguments at the corresponding
positions in f (t1�, . . . , tn� ) and f (t1�, . . . , tn� )(t2��t1) are identical, and
therefore denI,d( f (t1�, . . . , tn� )) � denI,d ( f (t1�, . . . , tn� )(t2��t1)).

We can now use 11.2.6 in the

Proof of 11.2.5: We shall prove only the first half of 11.2.5, since the sec-
ond half is proved in the same way with minor modifications. Let t1 and
t2 be closed terms and let P be a sentence that contains t1. If {t1 � t2, P}
is quantificationally inconsistent then trivially {t1 � t2, P} P(t2��t1).

If {t1 � t2, P} is quantificationally consistent, then let I be an
interpretation on which both t1 � t2 and P are true and hence satis-
fied by every satisfaction assignment d. We will show by mathematical
induction on the number of occurrences of logical operators in a for-
mula P that if t1 � t2 is satisfied by a satisfaction assignment d on an
interpretation I, then P is satisfied by d if and only if P(t2��t1) is sat-
isfied by d.
Basis clause: If P contains zero occurrences of logical operators and
t1 � t2 is satisfied by a satisfaction assignment d on an interpretation
I then P is satisfied by d if and only if P(t2��t1) is satisfied by d on I.
Proof of basis clause: Since P contains t1, P must be either a formula
of the form At1� . . . t n� or a formula of the form t1 � t2.

|=
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If P has the form At1� . . . t n� then P(t2��t1) is At1� . . . t n�, where
each t i� is either t i� or the result of replacing t1 in ti� with t2. In the former
case, denI,d(ti�) � denI,d(ti�) since t i� is t i�. In the latter case, denI,d(t i�) �
denI,d(t i�) by 11.2.6. So �denI,d(t1�), denI,d(t2�), . . . , denI,d(tn� )�
� �denI,d(t1�), denI,d(t2�), . . . , denI,d(tn�)� and so �denI,d(t1�),
denI,d(t2�), . . . , denI,d(tn� )� is a member of I(A) if and only if
�denI,d(t1�), denI,d(t2�), . . . , denI,d(tn�)� is a member of I(A).
Consequently, d satisfies At1� . . . tn� if and only if d satisfies At1� . . . tn�.

If P has the form t1� � t2� then P(t2��t1) is t1� � t2�, where each
t i� is either t i� or the result of replacing t1 in t i� with t2. In the former
case, denI,d(ti�) � denI,d(ti�) since ti� is ti�. In the latter case, denI,d(ti�) �
denI,d(ti�) by 11.2.6. It follows that denI,d(t1�) � denI,d(t2�) if and only if
denI,d(t1�) � denI,d(t2�). Since d satisfies t1� � t2� if and only if denI,d(t1�) �
denI,d(t2�) and d satisfies t1� � t2� if and only if denI,d(t1�) � denI,d(t2�), it
follows that d satisfies t1� � t2� if and only if it satisfies t1� � t2�.

Inductive step: If 11.2.5 is true of every formula P that contains k or
fewer occurrences of logical operators then 11.2.5 is also true of every
formula P that contains k � 1 occurrences of logical operators.

Proof of inductive step: Assume that the inductive hypothesis holds
for an arbitrary integer k. Let P be a formula that contains k � 1 log-
ical operators. We must show that if t1 � t2 is satisfied by a satisfaction
assignment d on an interpretation I then P is satisfied by d if and only
if P(t2��t1) is also satisfied by d. We shall show this by considering each
form that P might have.

Case 1. P is a formula of the form ∼ Q. Then P is satisfied by
d if and only if Q is not satisfied by d. Since Q contains k logical oper-
ators, it follows by the inductive hypothesis that Q is not satisfied by
d if and only if Q(t2��t1) is not satisfied by d, and this is the case if
and only if ∼ Q(t2��t1), which is P(t2��t1), is satisfied by d.

Cases 2–5. P has one of the forms (Q & R), (Q ∨ R), (Q ⊃ R),
or (Q � R). Similar to case 1.

Case 6. P has the form (∀x)Q. Then P is satisfied by d if and
only if every variable assignment d� that is like d except possibly in the
value assigned to x satisfies Q. Since t1 and t2 are closed terms, every
such variable assignment d� will satisfy t1 � t2 since denI,d(t1) �
denI,d�(t1) and denI,d(t2) � denI,d�(t2) by 11.2.2. Because Q contains
k occurrences of logical operators, it follows by the inductive hypoth-
esis that every such variable assignment d� will satisfy Q if and only if
it also satisfies Q(t2��t1), and every such variable assignment d� will
satisfy Q(t2��t1) if and only if d satisfies (∀x)Q(t2��t1), which is
P(t2��t1) (t1, being a closed term, is not the variable x).

Case 7. P has the form (∃x)Q. Similar to case 6.
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Section 11.3E

1.a. Assume that an argument of PL is valid in PD. Then the conclusion
is derivable in PD from the set consisting of the premises. By Metatheorem
11.3.1, it follows that the conclusion is quantificationally entailed by the set
consisting of the premises. Therefore the argument is quantificationally valid.

b. Assume that a sentence P is a theorem in PD. Then ∅ P. So 
∅ P, by Metatheorem 11.3.1, and P is quantificationally true.

2. Our induction will be on the number of occurrences of logical oper-
ators in P, for we must now take into account the quantifiers as well as the
truth-functional connectives.
Basis clause: Thesis 11.3.4 holds for every atomic formula of PL.

Proof: Assume that P is an atomic formula and that Q is a subformula
of P. Then P and Q are identical. For any formula Q1, then,
[P](Q1��Q) is simply Q1. It is trivial that the thesis holds in this case.

Inductive step: Let P be a formula with k � 1 occurrences of logical operators, let
Q be a subformula of P, and let Q1 be a formula related to Q as stipulated.
Assume (the inductive hypothesis) that 11.3.4 holds for every formula with k or
fewer occurrences of logical operators. We now establish that 11.3.4 holds for P
as well. Suppose first that Q and P are identical. In this case, that 11.3.4 holds
for P and [P](Q1��Q) is established as in the proof of the basis clause. So assume
that Q is a subformula of P that is not identical with P (in which case we say that
Q is a proper subformula of P). We consider each form that P may have.

(i) P is of the form ∼ R. Since Q is a proper subformula of P, Q is a
subformula of R. Therefore [P](Q1��Q) is ∼ [R](Q1��Q). Since R has fewer
than k � 1 occurrences of logical operators, it follows from the inductive hypoth-
esis that, on any interpretation, a variable assignment satisfies R if and only if it
satisfies [R](Q1��Q). Since an assignment satisfies a formula if and only if it
fails to satisfy the negation of the formula, it follows that on any interpretation
a variable assignment satisfies ∼ R if and only if it satisfies ∼ [R](Q1��Q).

(ii)–(v) P is of the form R & S, R ∨ S, R ⊃ S, or R � S. These cases
are handled similarly to case (ii) in the inductive proof of Lemma 6.1 (in
Chapter 6), with obvious adjustments as in case (i).

(vi) P is of the form (∀x)R. Since Q is a proper subformula of P, Q
is a subformula of R. Therefore [P](Q1��Q) is (∀x)[R](Q1��Q). Since R has
fewer than k � 1 occurrences of logical operators, it follows, by the inductive
hypothesis, that on any interpretation a variable assignment satisfies R if and
only if that assignment satisfies [R](Q1��Q). Now (∀x)R is satisfied by a vari-
able assignment d if and only if for each member u of the UD, d[u�x] satisfies
R. The latter is the case just in case [R](Q1��Q) is satisfied by every variant
d[u�x]. And this is the case if and only if (∀x)[R](Q1��Q) is satisfied by d.
Therefore on any interpretation (∀x)[R is satisfied by a variable assignment if
and only if (∀x)[R](Q1��Q) is satisfied by that assignment.

(vii) P is of the form (∃x)R. This case is similar to case (vi).

|=
�
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3. Qk�1 is justified at position k � 1 by Quantifier Negation. Then
Qk�1 is derived as follows:

h S
k � 1 Qk�1 h QN

where some component R of S has been replaced by a component R1 to obtain
Qk�1 and the four forms that R and R1 may have are

R is R1 is
∼ (∀x)P (∃x) ∼ P
(∃x) ∼ P ∼ (∀x)P
∼ (∃x)P (∀x) ∼ P
(∀x) ∼ P ∼ (∃x)P

Whichever pair R and R1 constitute, the two sentences contain exactly the
same nonlogical constants. We first establish that on any interpretation vari-
able assignment d satisfies R if and only if d satisfies R1.

(i) Either R is ∼ (∀x)P and R1 is (∃x) ∼ P, or R is (∃x) ∼ P and R1

is ∼ (∀x) P. Assume that a variable assignment d satisfies ∼ (∀x)P. Then d
does not satisfy (∀x)P. There is then at least one variant d[u�x] that does not
satisfy P. Hence d[u�x] satisfies ∼ P. It follows that d[u�x] satisfies (∃x) ∼ P.
Now assume that a variable assignment d satisfies (∃x) ∼ P. Then some vari-
ant d[u�x] satisfies ∼ P. This variant does not satisfy P. Therefore d does not
satisfy (∀x)P and does satisfy ∼ (∀x)P.

(ii) Either R is ∼ (∃x)P and R1 is (∀x) ∼ P, or R is (∀x) ∼ P and R1

is ∼ (∃x)P. This case is similar to case (i).
R and R1 contain the same nonlogical symbols and variables, so it fol-

lows, by 11.3.4 (Exercise 2), that S is satisfied by a variable assignment if and
only if Qk�1 is satisfied by that assignment. So on any interpretation S and
Qk�1 have the same truth-value.

By the inductive hypothesis, Γk S. But Γk is a subset of Γk�1, and so
Γk�1 S, by 11.3.2. Since S and Qk�1 have the same truth-value on any inter-
pretation, it follows that Γk�1 Qk�1.

Section 11.4E

2. Assume that Γ ∪ {∼ P} is inconsistent in PD. Then there is a deri-
vation of the following sort, where Q1, . . . , Qn are members of Γ:

1 Q1 Assumption
. .

n Qn Assumption
n � 1 ∼ P Assumption

. .
m S

. .
p ∼ S

|=
|=

|=
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We construct a new derivation as follows:

1 Q1 Assumption
. .

n Qn Assumption

n � 1 ∼ P Assumption

. . A / ∼ E
m S

. .
p ∼ S

p � 1 P n � 1 � p ∼ E

where lines 1 to p are as in the original derivation, except that ∼ P is now an
auxiliary assumption. This shows that Γ P.

3.a. Assume that an argument of PL is quantificationally valid. Then the
set consisting of the premises quantificationally entails the conclusion. By
Metatheorem 11.4.1, the conclusion is derivable from that set in PD. There-
fore the argument is valid in PD.

b. Assume that a sentence P is quantificationally true. Then ∅ P. By
Metatheorem 11.4.1, ∅ P. So P is a theorem in PD.

4. We shall associate with each symbol of PL a numeral as follows. With
each symbol of PL that is a symbol of SL, associate the two-digit numeral that
is associated with that symbol in the enumeration of Section 6.4. With the sym-
bol � (the prime) associate the numeral ‘66’. With the nonsubscripted lower-
case letters ‘a’, ‘b’, . . . , ‘z’, associate the numerals ‘67’, ‘68’, . . . , ‘92’,
respectively. With the symbols ‘∀’ and ‘∃’ associate the numerals ‘93’ and ‘94’,
respectively. (Note that the numerals ‘66’ to ‘94’ are not associated with any
symbol of SL.) We then associate with each sentence of PL the numeral that
consists of the associated numerals of each of the symbols that occur in the
sentence, in the order in which the symbols occur. We now enumerate the sen-
tences of PL by letting the first sentence be the sentence whose numeral
designates a number that is smaller than the number designated by any other
sentence’s associated numeral; the second sentence is the sentence whose
numeral designates the next largest number designated by the associated
numeral of any sentence; and so on.

5. Assume that Γ P. Then there is a derivation

1 Q1

. .
n Qn

. .

m P

where Q1, . . . , Qn are all members of Γ. The primary assumptions are all
members of any superset Γ� of Γ, and so Γ� P as well.��

�

|=
|=

|=
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6.a. Assume that a does not occur in any member of the set Γ ∪ {(∃x)P}
and that the set is consistent in PD. Assume, contrary to what we want to prove,
that Γ ∪ {(∃x)P, P(a�x)} is inconsistent in PD. Then there is a derivation of
the sort

1 Q1

. .
n Qn

n � 1 (∃x)P
n � 2 P(a�x)

m R
. .

p ∼ R

where Q1, . . . , Qn are all members of Γ. We may convert this into a deriva-
tion showing that Γ ∪ {(∃x)P} is inconsistent in PD, contradicting our initial
assumption:

1 Q1

. .
n Qn

n � 1 (∃x)P

n � 2 P(a�x)

n � 3 (∃x)P

. .
m � 1 R

. .
p � 1 ∼ R
p � 2 ∼ (∃x)P n � 3 � p � 1 ∼ I
p � 3 ∼ (∃x)P n � 2 � p � 2 ∃E
p � 4 (∃x)P n � 1 R

(Note that use of ∃E is legitimate at line p � 3 because a, by our initial hypoth-
esis, does not occur in (∃x)P or in any member of Γ.)

We conclude that if the set Γ ∪ {(∃x)P} is consistent in PD and a does
not occur in any member of that set, then Γ ∪ {(∃x)P(a�x)} is also consistent
in PD.

b. Let Γ* be constructed as in our proof of Lemma 11.4.4. Assume
that (∃x)P is a member of Γ* and that (∃x)P is the ith sentence in our enu-
meration of the sentences of PL. Then, by the way each member of the infinite
sequence Γ1, Γ2, Γ3, . . . is constructed, Γi�1 contains (∃x)P and a substitu-
tion instance of (∃x)P if Γi ∪ {(∃x)P} is consistent in PD. Since each member
of the infinite sequence is consistent in PD, Γi is consistent to PD. So assume
that Γi ∪ {(∃x)P} is inconsistent in PD. Then, since we assumed that Pi, that
is, (∃x)P, is a member of Γ* and since every member of Γi is a member of Γ*,

316 SOLUTIONS TO SELECTED EXERCISES ON P. 616
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it follows that Γ* is inconsistent in PD. But this contradicts our original assump-
tion, and so Γi ∪ {(∃x)P} is consistent in PD. Hence Γi�1 is Γi ∪ {(∃x)P, P(a/x)}
for some constant a, and so some substitution instance of (∃x)P is a member
of Γi�1 and thus of Γ*.

7. We shall prove that the sentence at each position i in the new
derivation can be justified by the same rule that was used at position i in the
original derivation.

Basis clause: Let i � 1. The sentence at position 1 of the original derivation is
an assumption, and so the sentence at position 1 of the new sequence can be
justified similarly.
Inductive step: Assume (the inductive hypothesis) that at every position i prior
to position k � 1, the new sequence contains a sentence that may be justified
by the rule justifying the sentence at position i of the original derivation. We
now prove that the sentence at position k � 1 of the new sequence can be jus-
tified by the rule justifying the sentence at position k � 1 of the original der-
ivation. We shall consider the rules by which the sentence at position k � 1
of the original derivation could have been justified:

1. P is justified at position k � 1 by Assumption. Obviously, P* can be
justified by Assumption at position k � 1 of the new sequence.

2. P is justified at position k � 1 by Reiteration. Then P occurs at an
accessible earlier position in the original derivation. Therefore P* occurs at an
accessible earlier position in the new sequence, so P* can be justified at posi-
tion k � 1 by Reiteration.

3. P is a conjunction Q & R justified at position k � 1 by Conjunc-
tion Introduction. Then the conjuncts Q and R of P occur at accessible ear-
lier positions in the original derivation. Therefore Q* and R* occur at acces-
sible earlier positions in the new sequence. So P*, which is just Q* & R*, can
be justified at position k � 1 by Conjunction Introduction.

4–12. P is justified by one of the other truth-functional connective
introduction or elimination rules. These cases are as straightforward as case 3,
so we move on to the quantifier rules.

13. P is a sentence Q(a�x) justified at position k � 1 by ∀E, appeal-
ing to an accessible earlier position with (∀x)Q. Then (∀x)Q* occurs at the
accessible earlier position of the new sequence, and Q(a�x)* occurs at posi-
tion k � 1. But Q(a�x)* is just a substitution instance of (∀x)Q*. So Q(a�x)*
can be justified at position k � 1 by ∀E.

14. P is a sentence (∃x)Q and is justified at position k � 1 by ∃I. This
case is similar to case 13.

15. P is a sentence (∀x)Q and is justified at position k � 1 by ∀I. Then
some substitution instance occurs at an accessible earlier position j, where a is
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a constant that does not occur in any open assumption prior to position k �
1 or in (∀x)Q. Q(a�x)* and (∀x)Q* occur at positions j and k � 1 of the new
sequence. Q(a�x)* is a substitution instance of (∀x)Q*. The instantiating con-
stant a in Q(a�x) is some ai, and so the instantiating constant in Q(a�x)* is bi.
Since ai did not occur in any open assumption before position k � 1 or in
(∀x)Q in the original derivation and bi does not occur in the original deriva-
tion, bi does not occur in any open assumption prior to position k � 1 of the
new sequence or in (∀x)Q*. So (∀x)Q* can be justified by ∀I at position k � 1
in the new sequence.

16. P is justified at position k � 1 by ∃E. This case is similar to case 15.

Since every sentence in the new sequence can be justified by a rule of PD, it
follows that the new sequence is indeed a derivation of PD.

10. We required that Γ* be ∃-complete so that we could construct an
interpretation I* for which we could prove that every member of Γ* is true on
I*. In requiring that Γ be ∃-complete in addition to being maximally consis-
tent in PD, we were guaranteed that Γ* had property g of sets that are both
maximally consistent in PD and ∃-complete; and we used this fact in case 7 of
the proof that every member of Γ* is true on I*.

11. To prove that PD* is complete for predicate logic, it will suffice to
show that with ∀E* instead of ∀E, every set Γ* of PD* that is both maximally
consistent in PD* and ∃-complete has property f (i.e., (∀x)P ∈ Γ* if and only
if for every constant a, P(a�x) ∈ Γ*). For the properties a to e and g can be
shown to characterize such sets by appealing to the rules of PD* that are rules
of PD. Here is our proof:

Proof: Assume that (∀x)P ∈ Γ*. Then, since {(∀x)P} ∼ (∃x) ∼ P by
∀E*, it follows from 11.3.3 that ∼ (∃x) ∼ P ∈ Γ*. Then (∃x) ∼ P ∉ Γ*,
by a. Assume that for some substitution instance P(a�x) of (∀x)P,
P(a�x) ∉ Γ*. Then, by a, ∼ P(a�x) ∈ Γ*. Since {∼ P(a�x)} (∃x) ∼ P
(without use of ∀E), it follows that (∃x) ∼ P ∈ Γ*. But we have just
shown that (∃x) ∼ P ∉ Γ*. Hence, if (∀x)P ∈ Γ*, then every substi-
tution instance P(a�x) of (∀x)P is a member of Γ*.

Now assume that (∀x)P ∉ Γ*. Then, by a, ∼ (∀x)P ∈ Γ*. But
then, since {∼ (∀x)P} (∃x) ∼ P (without use of ∀E), it follows that
(∃x) ∼ P ∈ Γ*. Since Γ* is ∃-complete, some substitution instance 
∼ P(a�x) of (∃x) ∼ P is a member of Γ*. By a, P(a�x) ∉ Γ*.

13. Assume that some sentence P is not quantificationally false. Then P
is true on at least one interpretation, so {P} is quantificationally consistent. Now
suppose that {P} is inconsistent in PD. Then some sentences Q and ∼ Q are
derivable from {P} in PD. By Metatheorem 11.3.1, it follows that {P} Q and 
{P} ∼ Q. But then P cannot be true on any interpretation, contrary to our|=

|=

�

�

�
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assumption. So {P} is consistent in PD. By 11.4.3 and 11.4.4 {Pe}—the set result-
ing from doubling the subscript of every individual constant in P—is a subset
of a set Γ* that is both maximally consistent in PD and ∃-complete. It follows
from Lemma 11.4.8 that Γ* is quantificationally consistent. But, in proving
11.4.8, we actually showed more—for the characteristic interpretation I* that we
constructed for Γ* has the set of positive integers as UD. Hence every member
of Γ* is true on some interpretation with the set of positive integers as UD, and
thus Pe is true on some interpretation with the set of positive integers as UD. P
can also be shown true on some interpretation with that UD, using 11.1.13.

16. We shall prove 11.4.1 by mathematical induction on the number of
functors occurring in t.

Basis clause: 11.4.1 holds of every complex closed term that contains
1 occurrence of a functor.
Proof of basis clause: If t contains 1 functor then t is f (t1, . . . , tn),
where each t i is a constant. Let a be the alphabetically earliest constant
such that f (t1, . . . , tn) � a is a member of Γ*. It follows from clause 4
of the definition of I* that I*( f ) includes �I*(t1), . . . , I*(tn), I*(a)�
and so denI*,d ( f (t1, . . . , tn)) � I*(a).
Inductive step: If 11.4.1 holds of every complex closed term that con-
tains k or fewer occurrences of functors, then 11.4.1 holds of every
complex closed term that contains k occurrences of functors.
Proof of inductive step: Assume the inductive hypothesis: that 11.4.1
holds of every complex closed term that contains k or fewer occur-
rences of functors. Let t be a term that contains k � 1 occurrences of
functors; we will show that 11.4.1 holds of t as well.

t has the form f (t1, . . . , tn), where each ti is a closed term con-
taining k or fewer occurrences of functors. Let a be the alphabetically
earliest constant such that f (t1, . . . , tn) � a is a member of Γ*. It follows
from the inductive hypothesis that for each ti, denI*,d(t i) � I*(ai), where
ai is the alphabetically earliest constant such that t i � ai is a member of
Γ*. It follows from property (i) of maximally consistent, ∃-complete sets
that f (a1, . . . , an) � a is a member of Γ*, and it follows from clause 4
of the definition of I* that I*( f ) includes �I*(a1), . . . , I*(an), I*(a)�
So denI*,d( f (t1, . . . , tn)) � denI*,d( f (a1, . . . , an)) � I*(a).

17. Consider the sentence ‘(∀x)(∀y)x � y’. This sentence is not quan-
tificationally false; it is true on every interpretation with a one-member UD.
In addition, however, it is true on only those interpretations that have one-
member UDs. (This is because for any variable assignment and any members
u1 and u2 of a UD, d[u1/x, u2/y] satisfies ‘x � y’ as required for the truth of
‘(∀x) (∀y)x � y’ if and only if u1 and u2 are the same object.) So there can
be no interpretation with the set of positive integers as UD on which the sen-
tence is true.
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Section 11.5E

2.a. Assume that for some sentence P, {P} has a closed truth-tree. Then,
by 11.5.1, {P} is quantificationally inconsistent. Hence there is no interpreta-
tion on which P, the sole member of {P}, is true. Therefore P is quantifica-
tionally false.

b. Assume that for some sentence P, {∼ P} has a closed truth-tree.
Then, by 11.5.1, {∼ P} is quantificationally inconsistent. Hence there is no inter-
pretation on which ∼ P is true. So P is true on every interpretation; that is, P
is quantificationally true.

d. Assume that Γ ∪ {∼ P} has a closed truth-tree. Then, by 11.5.1,
Γ ∪ {∼ P} is quantificationally inconsistent. Hence there is no interpretation on
which every member of Γ is true and ∼ P is also true. That is, there is no inter-
pretation on which every member of Γ is true and P is false. But then Γ P.

3.a. P is obtained from ∼ ∼ P by ∼ ∼ D. It is straightforward that 
{∼ ∼ P} P.

d. P or ∼ Q is obtained from ∼ (P ⊃ Q) by ∼ ⊃D. On any interpretation
on which ∼ (P ⊃ Q) is true, P ⊃ Q is false—hence P is true and Q is false. But,
if Q is false, then ∼ Q is true. Thus {∼ (P ⊃ Q)} P, and {∼ (P ⊃ Q)} ∼ Q.

e. P(a�x) is obtained from (∀x)P by ∀D. It follows, from 11.1.4, that
{(∀x)P} P(a�x).

4.a. ∼ P and ∼ Q are obtained from ∼ (P & Q) by ∼ &D. On any inter-
pretation on which ∼ (P & Q) is true, P & Q is false. But then either P is false,
or Q is false. Hence on such an interpretation either ∼ P is true, or ∼ Q is true.

5. The path is extended to form two paths to level k � 1 as a result
of applying one of the branching rules �D or ∼ �D to a sentence P on Γk.
We consider four cases.

a. Sentences P and ∼ P are entered at level k � 1 as the result of apply-
ing �D to a sentence P � Q on Γk. On any interpretation on which P � Q
is true, so is either P or ∼ P. Therefore either P and all the sentences on Γk

are true on IΓk
, which is a path variant of I for the new path containing P, or

∼ P and all the sentences on Γk are true on IΓk
, which is a path variant of I

for the new path containing ∼ P.
b. Sentence Q (or ∼ Q) is entered at level k � 1 as the result of apply-

ing �D to a sentence P � Q on Γk. Then P (or ∼ P) occurs on Γk at level k
(application of �D involves making entries at two levels, and Q and ∼ Q are
entries made on the second of these levels). Since {P � Q, P} quantification-
ally entails Q (and {P � Q, ∼ P} quantificationally entails ∼ Q), it follows that
Q and all the sentences on Γk (∼ Q and all the sentences on Γk) are all true
on IΓk

, which is a path variant of I for the new path containing Q (∼ Q).
c. Sentences P and ∼ P are entered at level k � 1 as the result of apply-

ing ∼ �D to a sentence ∼ (P � Q) on Γk. This case is similar to (a).
d. Sentence Q (or ∼ Q) is entered at level k � 1 as the result of apply-

ing ∼ �D to a sentence ∼ (P � Q) on Γk. This case is similar to (b).

|=

|=|=
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6. Yes. Dropping a rule would not make the method unsound, for, with
the remaining rules, it would still follow that if a branch on a tree for a set Γ
closes, then Γ is quantificationally inconsistent. That is, the remaining rules
would still be consistency-preserving.

7. In proving that the tree method for SL is sound, there are obvious
adjustments that must be made in the proof of Metatheorem 11.5.1. First, not
all the tree rules for PL are tree rules for SL. In proving Lemma 11.5.2, then,
we take only the tree rules for SL into consideration. And in the case of SL we
would be proving that certain sets are truth-functionally consistent or inconsis-
tent, rather than quantificationally consistent or inconsistent. The basic semantic
concept for SL is that of a truth-value assignment, rather than an interpretation.
With these stipulations, the proof of Metatheorem 11.5.1 can be converted
straight-forwardly into a proof of the parallel metatheorem for SL.

Section 11.6E

1.a. Assume that a sentence P is quantificationally false. Then {P} is
quantificationally inconsistent. It follows from Metatheorem 11.6.1 that every
systematic tree for {P} closes.

b. Assume that a sentence P is quantificationally true. Then ∼ P is
quantificationally false, and {∼ P} is quantificationally inconsistent. It follows
from Metatheorem 11.6.1 that every systematic tree for {∼ P} closes.

d. Assume that Γ P. Then on every interpretation on which every
member of Γ is true, P is true, and ∼ P is therefore false. So Γ ∪ {∼ P} is quan-
tificationally inconsistent. It follows from Metatheorem 11.6.1 that every sys-
tematic tree for Γ ∪ {∼ P} closes.

2.a. The lengths are 6, 2, and 6, respectively.

b. Assume that the length of a sentence ∼ (Q & R) is k. Then since
∼ (Q & R) contains an occurrence of the tilde and an occurrence of the
ampersand that neither Q nor R contains, the length of Q is k � 2 or less
and the length of R is k � 2 or less. Hence the length of ∼ Q is k � 1 or less,
and the length of ∼ R is k � 1 or less.

d. Assume that the length of a sentence ∼ (∀x)Q is k. Then the length
of the formula Q is k � 2. Hence the length of Q(a�x) is k � 2, since Q(a�x)
differs from Q only in containing a wherever Q contains x and neither con-
stants nor variables are counted in computing the length of a formula. Hence
the length of ∼ Q(a�x) is k � 1.

3.a. P is of the form Q ∨ R. Assume that P ∈ Γ. Then, by e, either
Q ∈ Γ, or R ∈ Γ. If Q ∈ Γ, then I(Q) � T, by the inductive hypothesis. If
R ∈ Γ, then I(R) � T, by the inductive hypothesis. Either way, it follows that
I(Q ∨ R) � T.

|=
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c. P is of the form Q ⊃ R. Assume that P ∈ Γ. Then, by g, either
∼ Q ∈ Γ or R ∈ Γ. By the inductive hypothesis, then, either I(∼ Q) � T or
I(R) � T. So either I(Q) � F or I(R) � T. Consequently, I(Q ⊃ R) � T.

f. P is of the form ∼ (Q � R). Assume that P ∈ Γ. Then, by j, either
both Q ∈ Γ and ∼ R ∈ Γ, or both ∼ Q ∈ Γ and R ∈ Γ. In the former case,
I(Q) � T and I(∼ R) � T, by the inductive hypothesis; so I(Q) � T and I(R) �
F. In the latter case, I(∼ Q) � T and I(R) � T, by the inductive hypothesis;
hence I(Q) � F and I(R) � T. Either way, it follows that I(Q � R) � F, and
so I(∼ (Q � R)) � T.

g. P is of the form (∃x)Q. Assume that P ∈ Γ. Then, by m, there
is some constant a such that Q(a�x) ∈ Γ. By the inductive hypothesis,
I(Q(a�x)) � T. By 11.1.5, {Q(a�x)} (∃x)Q. So I((∃x)Q) � T as well.

5. Clauses 7 and 9. First consider clause 7. Suppose that Q ⊃ R has k
occurrences of logical operators. Then Q certainly has fewer than k occurrences
of logical operators, and so does R. But, in the proof for case 7, once we
assume that Q ⊃ R ∈ Γ, we know that ∼ Q or R is a member of Γ by prop-
erty g of Hintikka sets. The problem is that we cannot apply the inductive
hypothesis to ∼ Q since ∼ Q might contain k occurrences of logical operators.
In the sentence ‘(Am & Bm) ⊃ Bm’, for instance, this happens. The entire
sentence has two occurrences of logical operators, but so does the negation
of the antecedent ‘∼ (Am & Bm)’. However, it can easily be shown that the
length of ∼ Q is less than the length of Q ⊃ R.

Similarly, in the case of clause 9 we know that if Q � R ∈ Γ, then
either both Q ∈ Γ and R ∈ Γ or both ∼ Q ∈ Γ and ∼ R ∈ Γ. But then we are
not guaranteed that either ∼ Q or ∼ R has fewer occurrences of logical oper-
ators than does Q � R. For instance, ‘∼ Am’ and ‘∼ Bm’ each contain one
occurrence of a logical operator, and so does ‘Am � Bm’.

6. If ∃D were not included, then we could not be assured that the set
of sentences on each open branch of a systematic tree has property m of Hin-
tikka sets. And in the inductive proof that every Hintikka set is quantifica-
tionally consistent we made use of this property in steps (12) and (13).

7. Yes, it would. For let us trace those places in our proof of Metathe-
orem 11.6.1 where we appealed to the rule ∼ ∀D. We used it to establish that
the set of sentences on an open branch of a systematic tree has property 1 of
Hintikka sets, and we appealed to property 1 in step (12) of our inductive
proof of 11.6.4. So let us first replace property 1 by the following:

1*. If ∼ (∀x)P ∈ Γ, then, for some constant a that occurs in some sen-
tence in Γ, ∼ P(a�x) ∈ Γ.

It is then easily established that every open branch of a systematic tree has
properties a to k, 1*, and m to n. In our inductive proof of Lemma 11.6.4,
change step (12) to the following:

�
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12*. P is of the form ∼ (∀x)Q. Assume that P ∈ Γ. Then, by 1*, there
is some constant a such that ∼ Q(a�x) ∈ Γ. By the inductive hypothesis,
I(∼ Q(a�x)) � T, and so I(Q(a�x)) � F. Since {(∀x)Q} Q(a�x), by 11.1.4,
it follows that I((∀x)Q) � F and I(∼ (∀x)Q) � T.

8. Certain adjustments are obvious if we are to convert the proof of
Metatheorem 11.6.1 into a proof that the tree method for SL is complete for
sentential logic. The tree method for SL contains only some of the rules of the
tree method for PL; hence we have fewer rules to work with. We replace talk of
quantificational concepts (consistency and the like) with talk of truth-functional
concepts, hence talk of interpretations with talk of truth-value assignments.

A Hintikka set of SL will have only properties a to j of Hintikka sets
for PL. And trees for SL are all finite, so we have only finite open branches to
consider in this case. (Thus Lemma 11.6 would not be used in the proof for
SL.) Finally, the construction of the characteristic truth-value assignment for a
Hintikka set of SL requires only clause 2 of the construction of the charac-
teristic interpretation for a Hintikka set of PL.

9. We must first show that a set Γ* that is both maximally consistent
in PD and ∃-complete has the 14 properties of Hintikka sets. We list those prop-
erties here. (And we refer to the 7 properties a to g of sets that are both max-
imally consistent in PD and ∃-complete as ‘M(a)’, ‘M(b)’, . . . , ‘M(g)’.)

a. For any atomic sentence P, not both P and ∼ P are members of Γ*.

Proof: This follows immediately from property M(a) of Γ*.

b. If ∼ ∼ P is a member of Γ*, then P is a member of Γ*.

Proof: If ∼ ∼ P ∈ Γ*, then ∼ P ∉ Γ*, by M(a), and P ∈ Γ*, by M(a).

c. If P & Q ∈ Γ*, then P ∈ Γ* and Q ∈ Γ*.

Proof: This follows from property M(b) of Γ*.

d. If ∼ (P & Q) ∈ Γ*, then either ∼ P ∈ Γ* or ∼ Q ∈ Γ*.

Proof: If ∼ (P & Q) ∈ Γ*, then P & Q ∉ Γ*, by M(a). By M(b),
either P ∉ Γ* or Q ∉ Γ*. By M(a), either ∼ P ∈ Γ* or ∼ Q ∈ Γ*.

e. to j. are established similarly.

k. If (∀x)P ∈ Γ, then at least one substitution instance of (∀x)P is a
member of Γ and for every constant a that occurs in some sentence of Γ,
P(a�x) ∈ Γ.

Proof: This follows from property M(f) of Γ*.

|=
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l. If ∼ (∀x)P ∈ Γ*, then (∃x) ∼ P ∈ Γ*.

Proof: If ∼ (∀x)P ∈ Γ*, then (∀x)P ∉ Γ*, by M(a). Then, for some
constant a, P(a�x) ∉ Γ*, by M(f). Then ∼ P(a�x) ∈ Γ*, by M(a). So
(∃x) ∼ P ∈ Γ*, by M(g).

m. If (∃x)P ∈ Γ*, then, for at least one constant a, P(a�x) ∈ Γ*.

Proof: This follows from property M(g) of Γ*.

n. If ∼ (∃x)P ∈ Γ*, then (∀x) ∼ P ∈ Γ*.

Proof: If ∼ (∃x)P ∈ Γ*, then (∃x)P ∉ Γ*, by M(a). Then, for every
constant a, P(a�x) ∉ Γ*, by M(g). So, for every constant a, 
∼ P(a�x) ∈ Γ*, by M(a). And (∀x) ∼ P ∈ Γ*, by M(f).

Second, that every Hintikka set is ∃-complete follows from property m
of Hintikka sets.

Third, we show that some Hintikka sets are not maximally consistent
in PD. Here is an example of such a set:

{(∀x)Fx, (∃y)Fy, Fa}

It is easily verified that this set is a Hintikka set. And the set is of course con-
sistent in PD. But this set is not such that the addition to the set of any sen-
tence that is not already a member will create an inconsistent set. For instance,
the sentence ‘Fb’ may be added, and the resulting set is also consistent in PD:

{(∀x)Fx, (∃y)Fy, Fa, Fb}

Hence the set is not maximally consistent in PD.
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