CHAPTER NINE

Section 9.1E

a. 1.	$(\exists x)Fx \checkmark$	SM
2.	$(\exists x) \sim Fx \checkmark$	SM
3.	Fa	1 ∃D
4.	~ Fb	2 3D
	0	

The tree has a completed open branch.

c. 1.	(∃x) (Fx &	~ Gx)	SM
2.	$(\forall x)$ (Fx	\supset Gx)	SM
3.	Fa & ~	Ga⊭	1 ∃D
4.	Fa	ı	3 &D
5.	~ (ba	3 &D
6.	$Fa \supset 0$	Ga 🖊	2 ∀D
7.	~ Fa	Ga	$6 \supset D$
	×	×	

The tree is closed.

e.	1.	$\sim (\forall x) (Fx \supset Gx) \checkmark$	SM
	2.	$\sim (\exists x) F x \checkmark$	SM
	3.	~ (∃x)Gx 🖊	SM
	4.	$(\exists x) \sim (Fx \supset Gx) \checkmark$	$1 \sim \forall D$
	5.	$(\forall x) \sim Fx$	$2\sim \exists D$
	6.	$(\forall x) \sim Gx$	$3 \sim \exists D$
	7.	\sim (Fa ⊃ Ga) \checkmark	4 3D
	8.	Fa	7 ~ ⊃D
	9.	~ Ga	7 ~ ⊃D
	10.	~ Fa	$5 \forall D$
		×	

The tree is closed.

g. 1.	$(\exists x)Fx \checkmark$	SM
2.	(∃y)Gy 🖊	SM
3.	(∃z) (Fz & Gz) ⊭	SM
4.	Fa	1 ∃D
5.	Gb	2 3D
6.	Fc & Gc	3 3D
7.	Fc	6 &D
8.	Gc	6 &D
	0	

The tree has a completed open branch.

198 SOLUTIONS TO SELECTED EXERCISES ON P. 467

The tree is closed.

k.	1.	$(\exists x)Fx \supset (\forall$	√x)Fx	SM
	2.	$\sim (\forall x) (Fx \supset$	$(\forall y)Fy)$	SM
	3.	$(\exists x) \sim (Fx \supset$	$(\forall y)Fy)$	$2 \sim \forall D$
	4.	\sim (Fa ⊃ (∀	y)Fy)	3 3D
	5.	Fa		4 ~ ⊃D
	6.	$\sim (\forall y) \mathbf{H}$	y 🖊	4 ~ ⊃D
	7.	(∃y) ~ I	Fy	$6 \sim \forall D$
	8.	~ Ft)	$7 \exists D$
	9.	~ (∃x)Fx ⊭	(∀x)Fx	$1 \supset D$
	10.	$(\forall x) \sim Fx$		9 ~ ∃D
	11.	~ Fa		$10 \ \forall D$
	12.	×	Fb	9 ∀D
			\times	

The tree is closed.

m.	1.	(∀x) (Fx	$x \supset (\exists y) Gyx$	SM
	2.	~ (∀	x) ~ Fx	SM
	3.	$(\forall \mathbf{x})$ ((∀y) ~ Gxy	SM
	4.	(∃x)	~ ~ Fx	$2 \sim \forall D$
	5.	~	~ Fa	4 3D
	6.		Fa	$5 \sim \sim D$
	7.	Fa ⊃	(∃y)Gya⊭	$1 \forall D$
			\frown	
	8.	~ Fa	(∃y)Gya	$7 \supset D$
	9.	\times	Gba	8 3D
	10.		$(\forall y) \sim Gby$	$3 \forall D$
	11.		~ Gba	$10 \ \forall D$
			×	

The tree is closed.

The tree is closed.

q. 1.	$(\exists \mathbf{x}) (\mathbf{F}\mathbf{x} \lor \mathbf{G}\mathbf{x})$	SM
2.	$(\forall x) (Fx \supset \sim Gx)$	SM
3.	$(\forall x) (Gx \supset \sim Fx)$	SM
4.	\sim ($\exists x$) (\sim Fx $\lor \sim$ Gx)	SM
5.	$(\forall x) \sim (\sim Fx \lor \sim Gx)$) 4 ~ ∃D
6.	Fa v Ga	$1 \exists D$
7.	Fa ⊃ ~ Ga⊭	$2 \forall D$
8.	Ga ⊃ ~ Fa⊭	3 \delta D
9.	~ (~ Fa ∨ ~ Ga)⊯	$5 \forall D$
10.	~ ~ Fa	$9 \sim \lor D$
11.	~ ~ Ga	$9 \sim \lor D$
12.	Ga	11 ~ ~ D
13.	Fa	10 ~ ~ D
		-
14.	~ Fa ~ Ga	7 ⊃D
	× ×	

The tree is closed.

Section 9.2E

Note: In these answers, whenever a tree is open we give a complete tree. This is because the strategies we have suggested do not uniquely determine the order of decomposition, and so the first open branch to be completed on your tree may not be the first such branch completed on our tree. In accordance with strategy 5, you should stop when your tree has one completed open branch.

a. 1.	$(\forall x)Fx \lor$	′ (∃y)Gy	SM
2.	$(\exists x) (Fx)$	& Gb)	SM
3.	Fa &	Gb⊭	2 3D
4.	1	Fa	3 &D
5.	(Gb	3 &D
	/		
6.	$(\forall x)Fx$	(∃y)Gy	$1 \lor D$
7.	Fa		$6 \forall D$
8.	Fb		$6 \forall D$
9.	0	Gc	6 3D
		0	

The tree has two completed open branches. The set is quantificationally consistent.

с. 1.	$(\forall x)$ (Fy	$x \supset Gxa$	SM
2.	(∃x)	Fx 🖊	SM
3.	$(\forall y)$	~ Gya	SM
4.	Ī	^r b	2 3D
5.	$Fb \supset$	Gba 🖊	$1 \forall D$
6.	$\sim Fb$	Gba	$5 \supset D$
7.	\times	~ Gba	3 ∀D
		×	

The tree is closed. The set is quantificationally inconsistent.

The tree has two completed open branches. The set is quantificationally consistent.

The literals 'Fb', 'Gba', 'Gaa', and '~ Fa' on the left completed open branch will all be true on any interpretation that makes the following assignments:

UD: {1, 2} a: 1 b: 2 Fx: x is even Gxy: x is greater than or equal to y

The literals 'Fb', 'Gba', 'Gaa' on the right completed open branch will also be true on any interpretation that makes these assignments.

g. 1.	$(\forall x) (Fx \lor Gx)$	SM
2.	$\sim (\exists y) (Fy \lor Gy) \checkmark$	SM
3.	$(\forall y) \sim (Fy \lor Gy)$	2 ~ ∃D
4.	~ (Fa ∨ Ga)	$3 \forall D$
5.	~ Fa	$4 \sim \lor D$
6.	~ Ga	$4 \sim \lor D$
7.	Fa v Ga🖊	$1 \forall D$
8.	Fa Ga	$7 \vee D$
	× ×	

The tree is closed. The set is quantificationally inconsistent.

i. 1.	$(\forall z)$	Hz	SM
2.	$(\exists x)Hx \supset$	(∀y)Fy	SM
3.	Ha	ı	$1 \forall D$
4.	~ (∃x)Hx ⊭	$(\forall y)$ Fy	2 ⊃D
5.	$(\forall x) \sim Hx$		$4 \sim \exists D$
6.	~ Ha		$5 \forall D$
7.	×	Fa	$4 \forall D$
		0	

The tree has one completed open branch. The set is quantificationally consistent.

The literals 'Ha' and 'Fa' on the completed open branch will both be true on any interpretation that makes the following assignments:

UD: {1} a: 1 Fx: x is a positive integer Hx: x is odd

k. 1.	$(\forall \mathbf{x}) (\forall \mathbf{y})$	Lxy	SM
2.	$(\exists z) \sim Lza \supset (\forall z)$	z) ~ Lza	SM
3.	(∀y)La	у	$1 \forall D$
4.	Laa		3 ∀D
	\frown		
5.	~ (∃z) ~ Lza⊭	$(\forall z) \sim Lza$	$2 \supset D$
6.		~ Laa	$5 \forall D$
7.	$(\forall z) \sim \sim Lza$	×	$5 \sim \exists D$
8.	~ ~ Laa 🖊		$7 \forall D$
9.	Laa		8 ~ ~ D
	0		

The tree has one completed open branch. The set is quantificationally consistent.

The literal 'Laa' on the completed open branch will be true on any interpretation that makes the following assignments:

UD:	{1}				
Lxy:	x is less than or equal	to y			
m. 1.	$(\forall x)(I)$	$R_X \equiv \sim 1$	Hxa)		SM
2.	~ (∀	y) ~ Hb	y 🖊		SM
3.		Ra			SM
4.	(∃y)	$\sim \sim Hby$	y 1		$2 \sim \forall D$
5.	~	∼ Hbc⊭	r		4 ∃D
6.		Hbc			$5 \sim \sim D$
7.	Ra ≡	≡ ~ Haa			$1 \forall D$
8.	Rb ≡	≡ ~ Hba			$1 \forall D$
9.	Rc =	≡~ Hca			$1 \forall D$
10.	Ra			~ Ra	$7 \equiv D$
11.	~ Haa			~ ~ Haa	$7 \equiv D$
				×	
12.	Rb	~]	Rb		$8 \equiv D$
13.	~ Hba	~ ~ H	Iba 🖊		$8 \equiv D$
14.	Rc ~ Rc	Rc	~ Rc		$9 \equiv D$
15.	~ Hca ~ ~ Hca⊭	~ Hca	~ ~ Hca		$9 \equiv D$
16.	o Hca		Нса		15 ~ ~ D
17.	0	Hba	Hba		13 ~ ~ D
		0	0		

The tree has four completed open branches (the leftmost four). The set is quantificationally consistent.

The literals 'Ra', 'Rb', 'Rc', 'Hbc', '~ Haa', '~ Hba', and '~ Hca' on the leftmost completed open branch will all be true on any interpretation that makes the following assignments:

UD: {1, 2, 3}
a: 3
b: 1
c: 2
Fx: x is a positive integer
Hxy: 2 times x is equal to y

The literals 'Ra', 'Rb', 'Rc', 'Hbc', '~ Haa', '~ Hba', and '~ Hca' on the second completed open branch will all be true on any interpretation that makes the following assignments:

UD: {1, 2, 3}
a: 1
b: 2
c: 3
Rx: x is less than 3
Hxy: x + y is greater than 3

The literals 'Ra', 'Rb', 'Rc', 'Hbc', '~ Haa', '~ Hba', and '~ Hca' on the third completed open branch will all be true on any interpretation that makes the following assignments:

UD: {1, 2, 3}
a: 1
b: 3
c: 2
Rx: x is less than 3
Hxy: x + y is greater than 3

The literals 'Ra', 'Rb', 'Rc', 'Hbc', '~ Haa', '~ Hba', and '~ Hca' on the fourth completed open branch will all be true on any interpretation that makes the following assignments:

UD: {1, 2, 3}
a: 1
b: 2
c: 3
Rx: x is less than 2
Hxy: x + y is greater than 2

Section 9.3E

1. a. 1.	~ $((\exists x)Fx \lor \sim (\exists x)Fx)$	SM
2.	$\sim (\exists x)Fx \checkmark$	$1 \sim \lor D$
3.	$\sim \sim (\exists x) F x \checkmark$	$1 \sim \lor D$
4.	$(\forall x) \sim Fx$	$2 \sim \exists D$
5.	$(\exists x)Fx \checkmark$	3 ~ ~ D
6.	Fa	$5 \exists D$
7.	~ Fa	$4 \forall D$
	×	

The tree is closed. The sentence $(\exists x)Fx \lor \sim (\exists x)Fx'$ is quantificationally true.

c. 1.	~ $((\forall x)Fx \lor (\forall x) \sim Fx)$	SM
2.	~ $(\forall x)Fx \checkmark$	$1 \sim \lor D$
3.	$(\exists x) \sim Fx \checkmark$	$1 \sim \lor D$
4.	$(\exists x) \sim Fx \checkmark$	$2 \sim \forall D$
5.	$(\exists x) \sim \neg Fx \checkmark$	$3 \sim \forall D$
6.	~ Fa	4 3D
7.	~ ~ Fb	5 3D
8.	Fb	7 ~ ~ D

The tree has a completed open branch, therefore the given sentence is not quantificationally true.

e. 1.	~ $((\forall x)Fx \lor (\exists x) \sim Fx) \checkmark$	SM
2.	~ $(\forall x)Fx \checkmark$	$1 \sim \lor D$
3.	~ (∃x) ~ Fx 🖊	$1 \sim \lor D$
4.	$(\exists x) \sim Fx \checkmark$	$2 \sim \forall D$
5.	$(\forall x) \sim \sim Fx$	$3 \sim \exists D$
6.	~ Fa	4 ∃D
7.	~ ~ Fa	$5 \forall D$
8.	Fa	$7 \sim \sim D$
	×	

The tree is closed. The sentence $(\forall x)Fx \vee (\exists x) \sim Fx$ is quantificationally true.

g.	1.	$\sim ((\forall x)(Fx \lor Gx) \supset (($	$\exists \mathbf{x}) \sim \mathbf{F}\mathbf{x} \supset (\exists \mathbf{x})\mathbf{G}\mathbf{x}))\mathbf{\mu}$	SM
	2.	$(\forall x)$ (F2	$x \vee Gx$)	$1 \sim \supset D$
	3.	$\sim ((\exists x) \sim Fx)$	$\supset (\exists x)Gx)$	$1 \sim \supset D$
	4.	(∃x) ~	Fx	3 ~ ⊃D
	5.	~ (∃x)	Gx	3 ~ ⊃D
	6.	$(\forall x)$	~ Gx	$5 \sim \exists D$
	7.	~]	Fa	4 ∃D
	8.	Fa ∨	Ga🖊	2 \delta D
	9.	Fa	Ga	8 ∨D
	10.	×	~ Ga	6 ∀D
			×	

The tree is closed. The sentence $(\forall x)(Fx \lor Gx) \supset [(\exists x) \sim Fx \supset (\exists x)Gx]$ ' is quantificationally true.

i. 1.	~ $(((\forall x)Fx \lor (\forall x)Gx))$	$(\forall x) (Fx \lor Gx))$	SM
2.	$(\forall x)Fx \lor$	(∀x)Gx 🖊	$1 \sim \supset D$
3.	$\sim (\forall x) (Fx)$	(∇Gx)	$1 \sim \supset D$
4.	$(\exists \mathbf{x}) \sim (\mathbf{F}\mathbf{x})$	$\mathbf{x} \vee \mathbf{G} \mathbf{x})$	$3 \sim \forall D$
5.	~ (Fa ∨	Ga)	4 ∃D
6.	~]	Fa	$5 \sim \lor D$
7.	~ (Ga	$5 \sim \lor D$
8.	$(\forall x)Fx$	$(\forall \mathbf{x})\mathbf{G}\mathbf{x}$	2 vD
9.	Fa	Ga	$8 \forall D$
	×	×	

The tree is closed. The sentence ' $((\forall x)Fx \lor (\forall x)Gx) \supset (\forall x)(Fx \lor Gx)$ ' is quantificationally true.

k. 1.	~ $((\exists x) (Fx \& Gx) \supset (\forall x))$	$((\exists x)Fx \& (\exists x)Gx))$	SM
2.	$(\exists x)$ (Fx	& Gx)	$1 \sim \supset D$
3.	~ ((∃x)Fx 8	~ $((\exists x)Fx \& (\exists x)Gx) \checkmark$	
4.	Fa &	Ga🖊	2 JD
5.	F	à	4 &D
6.	0	la	4 &D
7.	$\sim (\exists x)Fx \checkmark$	~ (∃x)Gx ∕∕	$3 \sim \&D$
8.	$(\forall x) \sim Fx$	$(\forall x) \sim Gx$	$7 \sim \exists D$
9.	~ Fa	~ Ga	$8 \forall D$
	×	×	

The tree is closed. The sentence ' $(\exists x)$ (Fx & Gx) \supset ($(\exists x)$ Fx & $(\exists x)$ Gx)' is quantificationally true.

m. 1.	~ (~ $(\exists x)Fx \lor (\forall x) ~ Fx)$	\mathbf{SM}
2.	$\sim \sim (\exists x) F x \checkmark$	$1 \sim \vee \mathrm{D}$
3.	~ (\delta x) ~ Fx	$1 \sim \vee \mathrm{D}$
4.	$(\exists x)Fx \checkmark$	2 ~ ~ D
5.	$(\exists x) \sim \neg Fx \checkmark$	$3 \sim \forall D$
6.	Fa	4 3D
7.	~ ~ Fb	$5 \exists D$
8.	Fb	7 ~ ~ D
	0	

The tree has a completed open branch, therefore the given sentence is not quantificationally true.

The tree has at least one completed open branch, therefore the given sentence is not quantificationally true.

q. 1.	$\sim ((\forall x)(Fx \supset Gx) \supset ($	$(\forall \mathbf{x}) (\mathbf{F}\mathbf{x} \supset \mathbf{x})$	$\forall y) Gy))$	SM
2.	$(\forall x)$ (Fx	$x \supset Gx$		$1 \sim \supset D$
3.	$\sim (\forall x) (Fx \equiv$	o (∀y)Gy)		$1 \sim \supset D$
4.	$(\exists x) \sim (Fx \equiv$	$(\forall y) Gy)$,	$3 \sim \forall D$
5.	\sim (Fa \supset ($\forall y) Gy)$		4 3D
6.	F	a		$5 \sim \supset D$
7.	~ (∀y)) Gy 🖊		$5 \sim \supset D$
8.	(∃y) ~	Gy		$7 \sim \forall D$
9.	~ (Gb		8 ∃D
10.	$Fa \supset$	Ga🖊		$2 \forall D$
11.	~ Fa	(Ga	$10 \supset D$
12.	X	$Fb \supset$	Gb	$2 \forall D$
13.		~ Fb	Gb	12 ⊃D
		0	\times	

The tree has a completed open branch, therefore the given sentence is not quantificationally true.

s. 1.	~ $((\forall x)Gxx \supset (\forall x)(\forall y)Gxy)$	SM
2.	$(\forall x)Gxx$	$1\sim \supset \mathrm{D}$
3.	~ $(\forall x) (\forall y) Gxy \checkmark$	$1\sim \supset \mathrm{D}$
4.	$(\exists x) \sim (\forall y) Gxy \checkmark$	$3 \sim \forall D$
5.	~ (∀y)Gay	4 ∃D
6.	(∃y) ~ Gay	$5 \sim \forall D$
7.	~ Gab	6 ∃D
8.	Gaa	2 ∀D
9.	Gbb	2 ∀D
	0	

The tree has a completed open branch, therefore the given sentence is not quantificationally true.

u. 1.	~ $((\exists x) (\forall y) Gxy \supset (\forall x) (\exists y) Gyx) \checkmark$	SM
2.	$(\exists x) (\forall y) Gxy \checkmark$	1 ~ ⊃D
3.	~ $(\forall x)(\exists y)Gyx \checkmark$	1 ~ ⊃D
4.	$(\exists x) \sim (\exists y) Gyx \checkmark$	$3 \sim \forall D$
5.	(∀y)Gay	2 3D
6.	~ (∃y)Gyb	4 3D
7.	$(\forall y) \sim Gyb$	$6 \sim \exists D$
8.	Gab	$5 \forall D$
9.	~ Gab	$7 \forall D$
	×	

The tree is closed. The sentence ' $(\exists x) (\forall y)Gxy \supset (\forall x) (\exists y)Gyx$ ' is quantificationally true.

w. 1.	~ $(((\exists x) Lxx \supset (\forall y) Ly)$	$(y) \supset (Laa \supset Lgg))$	SM
2.	$(\exists x)Lxx \supset$	$(\forall y)$ Lyy	$1\sim \supset D$
3.	~ (Laa ⊐	⊳ Lgg)	$1\sim \supset D$
4.	Ι	aa	3 ~ ⊃D
5.	~ L	gg	3 ~ ⊃D
6.	~ $(\exists x)Lxx \checkmark$	(∀y)Lyy	$2 \supset D$
7.	$(\forall x) \sim Lxx$		$6 \sim \exists D$
8.	~ Laa		$7 \forall D$
9.	×	Lgg	$6 \forall D$
		×	

The tree is closed. The sentence ' $[(\exists x)Lxx \supset (\forall y)Lyy] \supset (Laa \supset Lgg)$ ' is quantificationally true.

2. a. 1.	$(\forall x)Fx \& (\exists x) \sim Fx \checkmark$	SM
2.	$(\forall x)Fx$	1 &D
3.	$(\exists x) \sim Fx \checkmark$	1 &D
4.	~ Fa	3 3D
5.	Fa	$2 \forall D$
	×	
c. 1.	$(\exists x)Fx \& (\exists x) \sim Fx \checkmark$	SM
c. 1. 2.	$(\exists x)Fx \& (\exists x) \sim Fx \checkmark$ $(\exists x)Fx \checkmark$	SM 1 &D
c. 1. 2. 3.	$ \begin{array}{l} (\exists x) Fx \& (\exists x) \sim Fx \checkmark \\ (\exists x) Fx \checkmark \\ (\exists x) \sim Fx \checkmark \end{array} $	SM 1 &D 1 &D
c. 1. 2. 3. 4.	$\begin{array}{c} (\exists x)Fx \& (\exists x) \sim Fx \checkmark \\ (\exists x)Fx \checkmark \\ (\exists x) \sim Fx \checkmark \\ Fa \end{array}$	SM 1 &D 1 &D 2 ∃D
c. 1. 2. 3. 4. 5.	$(\exists x)Fx & (\exists x) \sim Fx \checkmark$ $(\exists x)Fx \checkmark$ $(\exists x) \sim Fx \checkmark$ Fa $ \sim Fb$	SM 1 &D 1 &D 2 ∃D 3 ∃D

The tree has at least one completed open branch. Therefore, the given sentence is not quantificationally false.

e. 1.	$(\forall x)$ (Fx	$\supset (\forall y) \sim Fy)$	SM
2.	$Fa \supset ($	(∀y) ~ Fy⊭	$1 \forall D$
	/	\frown	
3.	~ Fa	$(\forall y) \sim Fy$	$2 \supset D$
4.	0	~ Fa	3 ∀D
		0	

The tree has at least one completed open branch. Therefore, the given sentence is not quantificationally false.

g. 1. $(\forall \mathbf{x}) (\mathbf{F}\mathbf{x} \equiv \sim \mathbf{F}\mathbf{x})$ SM $1 \forall D$ Fa ≡ ~ Fa⊭ 2. 3. Fa ~ Fa $2 \equiv D$ ~ ~ Fa 4. ~ Fa $2 \equiv D$ 5. \times Fa 4 ~ ~ D \times

The tree is closed. Therefore the sentence is quantificationally false.

i. 1.	$(\exists x) (\exists y) (Fxy \& \sim Fyx) \checkmark$	SM
2.	(∃y) (Fay & ~ Fya) /	1 ∃D
3.	Fab & ∼ Fba⊭	2 3D
4.	Fab	3 &D
5.	~ Fba	3 &D
	0	

The tree has a completed open branch. Therefore, the given sentence is not quantificationally false.

The tree has at least one completed open branch. Therefore, the given sentence is not quantificationally false.

m. 1.	$(\exists x) (\forall y) Gxy \& \sim (\forall y) (\exists x) Gxy \checkmark$	SM
2.	$(\exists x) (\forall y) Gxy \checkmark$	1 &D
3.	~ $(\forall y) (\exists x) Gxy \checkmark$	1 &D
4.	$(\exists y) \sim (\exists x) Gxy \checkmark$	$3 \sim \forall D$
5.	(∀y)Gay	2 3D
6.	~ (∃x)Gxb	4 3D
7.	$(\forall x) \sim Gxb$	$6 \sim \exists D$
8.	Gab	$5 \forall D$
9.	~ Gab	$7 \forall D$
	×	

The tree is closed. Therefore the sentence is quantificationally false.

3. a. 1.	~ $((\exists x)Fxx \supset (\exists x)(\exists y)Fxy)$	SM
2.	$(\exists x)Fxx \checkmark$	$1\sim \supset \mathrm{D}$
3.	~ (∃x) (∃y)Fxy	$1\sim \supset \mathrm{D}$
4.	$(\forall x) \sim (\exists y)Fxy$	$3 \sim \exists D$
5.	Faa	2 3D
6.	~ (∃y)Fay	$4 \forall D$
7.	$(\forall y) \sim Fay$	$6 \sim \exists D$
8.	~ Faa	$7 \forall D$
	×	

The tree for the negation of $(\exists x)Fxx \supset (\exists x)(\exists y)Fxy'$ is closed. Therefore the latter sentence is quantificationally true.

с. 1.	~ $((\exists x)(\forall y)Lxy \supset (\exists x)Lxx) \checkmark$	SM
2.	$(\exists x) (\forall y) Lxy \checkmark$	1 ~ ⊃D
3.	$\sim (\exists x) Lxx \checkmark$	1 ~ ⊃D
4.	$(\forall x) \sim Lxx$	3 ~ ∃D
5.	(∀y)Lay	2 3D
6.	~ Laa	4 ∀D
7.	Laa	$5 \forall D$
	×	

The tree for the negation of $(\exists x) (\forall y) Lxy \supset (\exists x) Lxx'$ is closed. Therefore the latter sentence is quantificationally true.

210 SOLUTIONS TO SELECTED EXERCISES ON PP. 480-482

e.	1.	$\sim ((\forall x) (Fx \supset (\exists y) Gy))$	$(\operatorname{Fb} \supset (\exists y) \operatorname{Gya}))$	SM
	2.	$(\forall x)$ (Fx	$\supset (\exists y) Gya)$	$1 \sim \supset D$
	3.	\sim (Fb \supset	(∃y)Gya)	$1 \sim \supset D$
	4.		Fb	3 ~ ⊃D
	5.	~ (∃	y)Gya	3 ~ ⊃D
	6.	$(\forall y)$	- Gya	$5 \sim \exists D$
	7.	$Fb \supset ($	∃y)Gya	$2 \forall D$
	8.	~ Fb	(∃y)Gya	$7 \supset D$
	9.	×	Gca	8 3D
	10.		~ Gca	6 \delta D
			×	

The tree for the negation of $(\forall x) (Fx \supset (\exists y)Gya) \supset (Fb \supset (\exists y)Gya)'$ is closed. Therefore the latter sentence is quantificationally true.

g. 1.	~ $((\forall x) (Fx \supset (\forall y) Gxy) =$	$(\exists x) (Fx \supset \sim (\forall y) Gxy))$	SM
2.	$(\forall \mathbf{x})$ (Fx =	$1 \sim \supset D$	
3.	\sim ($\exists x$) (Fx \supset	$\sim (\forall y) Gxy) \checkmark$	$1 \sim \supset D$
4.	$(\forall x) \sim (Fx)$	$\supset \sim (\forall y) Gxy)$	$3 \sim \exists D$
5.	\sim (Fa $\supset \sim$	(∀y)Gay)	$4 \forall D$
6.		Fa	$5 \sim \supset D$
7.	$\sim \sim (\forall$	′y)Gay⊭	$5 \sim \supset D$
8.	(∀y	y)Gay	$7 \sim \sim D$
9.	$Fa \supset (Y)$	√y)Gay	$2 \forall D$
10.	~ Fa	$(\forall y)$ Gay	$9 \supset D$
11.	×	Gaa	10 ∀D
		0	
1	$(\forall \mathbf{y}) (\mathbf{F}\mathbf{y} \supset (\forall \mathbf{y}) \mathbf{C}\mathbf{y}\mathbf{y}) \supset$	$(\exists \mathbf{y}) (\mathbf{F}\mathbf{y} \supset \mathbf{z}, (\forall \mathbf{y}) \mathbf{C}\mathbf{y}\mathbf{y})$	SM
1.	$(\forall \mathbf{X})(\mathbf{F}\mathbf{X} \supseteq (\forall \mathbf{y})(\mathbf{G}\mathbf{X}\mathbf{y})) \supseteq$	$(\Box x)(\Gamma x \Box f^{*} (\forall y) \partial x y) \mu$	5111
2	~ $(\forall x) (Fx \supset (\forall y) Gxy)$	$(\exists x) (Fx \supset \sim (\forall y) Gxy) \checkmark$	1 ¬D
3.	$(\exists \mathbf{x}) \sim (\mathbf{F}\mathbf{x} \supset (\forall \mathbf{y})\mathbf{G}\mathbf{x}\mathbf{y})\mathbf{i}$		$2 \sim \forall D$
4	\sim (Fa \supset (\forall y) Gay)		3 FD
5	Fa		4 ~ ⊃D
6	$\sim (\forall y) Gay \checkmark$		$4 \sim \neg D$
7	$(\exists v) \sim Gav I$		$6 \sim \forall D$
8	\sim Gab		7 FD
9	Oab	Fa $\supset \sim (\forall y)$ Gav	9 3D
0.	0		4 10
10.		~ Fa ~ $(\forall v) Gav \checkmark$	9 ⊃D
11.		o (∃v) ~ Gav	10 ~ ∀D
12.		~ Gab	11 H D
		0	

Both the tree for the given sentence and the tree for its negation have at least one completed open branch. Therefore the given sentence is quantificationally indeterminate.

The tree is closed. Therefore the sentences ' $(\forall x)Mxx$ ' and '~ $(\exists x)$ ~ Mxx' are quantificationally equivalent.

c. 1.	$\sim ((\forall x)(I))$	$Fa \supset Gx) =$	\equiv (Fa \supset (\forall :	x)Gx))⊭	SM
				<	
2.	$(\forall x)$ (F	$a \supset Gx$)	$\sim (\forall x) (Fa)$	$a \supset Gx)$	$1\sim\equiv\!\mathrm{D}$
3.	\sim (Fa \supset ($(\forall x)Gx)$	$Fa \supset (\forall$	∕x)Gx	$1 \sim \equiv D$
4.	F	Fa			3 ~ ⊃D
5.	~ (∀x)Gx≁			3 ~ ⊃D
6.	(∃x) ~	- Gx			$5 \sim \forall D$
7.	~	Gb			6 3D
8.	Fa ⊃	Gb⊭			2 ∀D
		\backslash			
9.	~ Fa	Gb			8 ⊃D
10.	\times	×	$(\exists x) \sim (F_{z})$	$a \supset Gx)$	$2 \sim \forall D$
11.			~ (Fa =	⊃ Gc)	10 ∃D
12.				Fa	11 ~ ⊃D
13.			~	Ģc	11 ~ ⊃D
			/	\frown	
14.			~ Fa	(∀x)Gx	3 ⊃D
15.			×	Gc	14 $\forall D$
				×	

The tree is closed. Therefore the sentences ' $(\forall x)$ (Fa \supset Gx)' and 'Fa \supset ($\forall x$)Gx' are quantificationally equivalent.

The tree has a completed open branch. Therefore the given sentences are not quantificationally equivalent.

The tree is closed. Therefore the sentences $(\forall x)Fx \supset Ga'$ and $(\exists x)(Fx \supset Ga)'$ are quantificationally equivalent.

i. 1.	$\sim ((\forall x) (\forall y) (Fx \supset Gy) \equiv$	$= (\forall x) (Fx \supset (\forall y)Gy)) \checkmark$	SM
2.	$(\forall x) (\forall y) (Fx \supset Gy)$	~ $(\forall x) (\forall y) (Fx \supset Gy) \checkmark$	$1 \sim \equiv D$
3.	~ $(\forall x) (Fx \supset (\forall y)Gy) \checkmark$	$(\forall \mathbf{x}) (\mathbf{F}\mathbf{x} \supset (\forall \mathbf{y})\mathbf{G}\mathbf{y})$	$1 \sim \equiv D$
4.	$(\exists \mathbf{x}) \sim (\mathbf{F}\mathbf{x} \supset (\forall \mathbf{y})\mathbf{G}\mathbf{y})\mathbf{\not{\hspace{-0.5mm}/}}$		$3 \sim \forall D$
5.	~ $(Fa \supset (\forall y)Gy)$		4 ∃D
6.	Fa		$5 \sim \supset D$
7.	~ (∀y)Gy ∕∕		$5 \sim \supset D$
8.	(∃y) ~ Gy ∕∕		$7 \sim \forall D$
9.	~ Gb		8 ∃D
10.	$(\forall y) (Fa \supset Gy)$		2 ∀D
11.	$Fa \supset Gb \checkmark$		$10 \ \forall D$
12.	~ Fa Gb		11 ⊃D
13.	\times \times	$(\exists \mathbf{x}) \sim (\forall \mathbf{y}) (\mathbf{F}\mathbf{x} \supset \mathbf{G}\mathbf{y}) \mathbf{i}$	$2 \sim \forall D$
14.		~ $(\forall y) (Fc \supset Gy) \checkmark$	13 ∃D
15.		$(\exists y) \sim (Fc \supset Gy) \checkmark$	$14 \sim \forall D$
16.		\sim (Fc \supset Gd)	15 ∃D
17.		Fc	16 ~ ⊃D
18.		~ Gd	16 ~ ⊃D
19.		$Fc \supset (\forall y)Gy \checkmark$	3 \dd D
20.		\sim Fc $(\forall y)$ Gy	19 ⊃D
21.		\times Gd	$20 \forall D$
		×	

The tree is closed. Therefore the sentences $(\forall x) (\forall y) (Fx \supset Gy)$ ' and $(\forall x) (Fx \supset (\forall y)Gy)$ ' are quantificationally equivalent.

The tree has a completed open branch. Therefore the given sentences are not quantificationally equivalent.

The tree is closed. Therefore the sentences $(\forall x) (Fx \supset (\forall y)Gy)$ and $(\forall x) (\forall y) (Fx \supset Gy)$ are quantificationally equivalent.

5. a. 1.	$(\forall x) (Fx \supset Gx)$	SM
2.	Ga	SM
3.	~ Fa	SM
4.	Fa ⊃ Ga⊭	$1 \forall D$
5.	~ Fa Ga	4 ⊃D
	0 0	

The tree has at least one completed open branch. Therefore the argument is quantificationally invalid.

The tree has at least one completed open branch. Therefore the argument is quantificationally invalid.

218 SOLUTIONS TO SELECTED EXERCISES ON PP. 480-482

The tree is closed. Therefore the argument is quantificationally valid.

k. 1.	$(\forall x)$ (Fx	$\supset Gx$)	SM
2.	~ (∃x)	Fx⊭	SM
3.	~ ~ (∃x))Gx	SM
4.	(∃x)G	X	3 ~ ~ D
5.	Ga	ι	4 3D
6.	$(\forall x)$	~ Fx	$2 \sim \exists D$
7.	$Fa \supset G$	Ga	$1 \forall D$
8.	~ F	a	$6 \forall D$
9.	~ Fa	Ga	$7 \supset D$
	0	0	

The tree has at least one completed open branch. Therefore the argument is quantificationally invalid.

6. a.	1.	$(\forall x) \sim Jx$		SM
	2.	$(\exists y) (Hby \lor Ryy) \supset (\exists x)$)Jx	SM
	3.	~ $(\forall y)$ ~ (Hby \lor Ryy)	SM
	4.	$(\exists y) \sim \sim (Hby \lor Ryy)$	1	$3 \sim \forall D$
	5.	$\sim \sim (\text{Hba} \lor \text{Raa})$	r	4 3D
	6.	Hba v Raa		5 ~ ~ D
	7.	~ Ja		$1 \forall D$
	8.	~ Jb		$1 \forall D$
	9.	~ $(\exists y) (Hby \lor Ryy)$	(∃x)Jx	$2 \supset D$
	10.		Jc	9 3D
	11.		~ Jc	$1 \forall D$
	12.	$(\forall y) \sim (Hby \lor Ryy)$	\times	$9 \sim \exists D$
	13.	~ (Hba ∨ Raa)		12 ∀D
	14.	~ Hba		$13 \sim \lor D$
	15.	~ Raa		$13 \sim \lor D$
	16.	Hba Raa		$6 \lor D$
		× ×		

The tree is closed. Therefore the entailment does hold.

The tree is closed. Therefore the entailment does hold.

e.	1.	$(\forall z)(Lz \equiv H$	z)	SM
	2.	$(\forall x) \sim (Hx \lor \sim$	· Bx)	SM
	3.	~ ~ Lb		SM
	4.	Lb		3 ~ ~ D
	5.	$Lb \equiv Hb\mu$	r	$1 \forall D$
	6.	Lb	~ Lb	$5 \equiv D$
	7.	Hb	\sim Hb	$5 \equiv D$
	8.	~ (Hb \vee ~ Bb) $\blacktriangleright\!\!\!/$	\times	$2 \forall D$
	9.	~ Hb		$8 \sim \lor D$
	10.	$\sim \sim Bb$		$8 \sim \lor D$
		×		

The tree is closed. Therefore the entailment does hold.

Section 9.4E

Note: Branches that are open but not completed are so indicated by a series of dots below the branch.

The tree has at least one completed open branch. Therefore the set is quantificationally consistent.

The tree has a completed open branch. Therefore the set is quantificationally consistent.

The tree is closed. Therefore the set is quantificationally inconsistent.

g. 1.	(∀x)) (∃y) Fxy	SM
2.	(∃y)(∀	x) ∼ Fyx 🖊	\mathbf{SM}
3.	(∀x	x) ~ Fax	2 3D2
4.	(∃y	v)Fay	$1 \forall D$
5.	-	- Faa	3 \(\not\)D
		\frown	
6.	Faa	Fab	4 3D2
7.	\times	(∃y)Fby	$1 \forall D$
8.		~ Fab	3 \(\not\)D
		×	

The tree is closed. Therefore the set is quantificationally inconsistent.

The tree has at least one completed open branch. The set is quantificationally consistent.

The tree has at least one completed open branch. Therefore the set is quantificationally consistent.

ш.

Both the tree for the sentence and the tree for its negation have at least one completed open branch. Therefore the sentence is quantificationally indeterminate.

c. 1.	$\sim (\forall x) (Fx \supset (\forall x))$	$(\text{Hy} \supset \text{Fy})) \not \checkmark$	SM
2.	$(\exists x) \sim (Fx \supset (\forall$	$(\text{Hy} \supset \text{Fy}))$	$1 \sim \forall D$
3.	\sim (Fa \supset (\forall y)	$(Hy \supset Fy))$	2 3D2
4.	F	`a	3 ~ ⊃D
5.	$\sim (\forall y) (H$	$y \supset Fy)$	$3 \sim \supset D$
6.	(∃y) ~ (H	$(y \supset Fy)$	$5 \sim \forall D$
	. /		
7.	~ $(Ha \supset Fa)$	~ $(Hb \supset Fb)$	6 3D2
8.	На	Hb	$7 \sim \supset D$
9.	~ Fa	~ Fb	$7 \sim \supset D$
	×		
1.	$(\forall \mathbf{x}) (\mathbf{F}\mathbf{x} \supset (\forall$	$(y) (Hy \supset Fy))$	SM
2.	$Fa \supset (\forall y)$	$Hy \supset Fy)$	$1 \forall D$
3.	~ Fa	$(\forall y) (Hy \supset Fy)$	$2 \supset D$
	0		

Both the tree for the sentence and the tree for its negation have at least one completed open branch. Therefore the sentence is quantificationally indeterminate.

e. 1.	\sim (($\exists x$) (Fx $\lor \sim$ Fx)	$\equiv \underbrace{((\exists x)Fx}_{} \lor (\exists x)$) ~ Fx))	SM
2.	$(\exists \mathbf{x}) (\mathbf{F}\mathbf{x} \lor \sim \mathbf{F}\mathbf{x})$	\sim ($\exists x$) (F:	$\mathbf{x} \lor \sim \mathbf{F} \mathbf{x}) \boldsymbol{\nu}$	$1 \sim \equiv D$
3.	$\sim ((\exists x)Fx \lor (\exists x) \sim Fx$	$(\exists x) \not\models (\exists x) Fx \lor$	$(\exists x) \sim Fx \checkmark$	$1 \sim \equiv D$
4.	$\sim (\exists x) F x \checkmark$			$3 \sim \lor D$
5.	~ (∃x) ~ Fx			$3 \sim \lor D$
6.	$(\forall x) \sim Fx$			$4 \sim \exists D$
7.	$(\forall x) \sim Fx$			$5 \sim \exists D$
8.	Fa∨~ Fa⊭			2 3D2
9.	Fa ~ Fa			
10.		$(\forall x) \sim ($	$Fx \lor \sim Fx$)	$2 \sim \exists D$
11.		$(\exists x)Fx \checkmark$	$(\exists x) \sim Fx \checkmark$	3 vD
		Fa	~ Fa	11 ∃D2
12.	~ Fa ~ Fa			$6 \forall D$
13.	× ~~ Fa🖊			$7 \forall D$
14.	Fa			13 ~ ~ D
15.	×	~ (Fa ∨ ~ Fa)	~ (Fa ∨ ~ Fa)⊭	$10 \forall D$
16.		~ Fa	~ Fa	$15 \sim \lor D$
17.		~ ~ Fa	~ ~ Fa	$15 \sim \lor D$
18.		×	Fa	17 ~ ~ D
			×	

The tree for the negation of the sentence is closed. Therefore the sentence is quantificationally true.

g. 1.	$\sim ((\forall x)(Fx \supset ((\exists y)Gyx \supset H)) \supset (\forall x)(Fx \supset (\exists y)(Gyx \supset H))) \checkmark$	SM	
2.	$(\forall x) (Fx \supset ((\exists y) Gyx \supset H))$	$1\sim \supset D$	
3.	~ $(\forall x) (Fx \supset ((\exists y) (Gyx \supset H)))$	$1\sim \supset D$	
4.	$(\exists x) \sim (Fx \supset (\exists y) (Gyx \supset H)) \checkmark$		
5.	~ $(Fa \supset (\exists y) (Gya \supset H))$	4 3D2	
6.	Fa	5 ~ ⊃D	
7.	$\sim (\exists y) (Gya \supset H) \varkappa$	5 ~ ⊃D	
8.	$(\forall y) \sim (Gya \supset H)$	$7 \sim \exists D$	
9.	~ $(Gaa \supset H) \checkmark$	$8 \forall D$	
10.	$Fa \supset ((\exists y)Gya \supset H) \checkmark$	2 ∀D	
11.	Gaa		
12.	~ H		
13.	\sim Fa $(\exists y)$ Gya \supset H	$10 \supset D$	
	X		
14.	~ (∃y)Gya⊭ H	$13 \supset D$	
15.	$(\forall y) \sim Gya \qquad \qquad$	14 ~ ∃D	
16.	~ Gaa	$15 \forall D$	
	X		

The tree for the negation of the sentence is closed. Therefore the sentence is quantificationally true.

The tree for the premises and the negation of the conclusion has at least one completed open branch. Therefore the argument is quantificationally invalid.

SOLUTIONS TO SELECTED EXERCISES ON PP. 496-498 229

The tree for the premises and the negation of the conclusion is closed. Therefore the argument is quantificationally valid.

The tree for the premises and the negation of the conclusion has at least one completed open branch. Therefore the argument is quantificationally invalid.

The tree for the premises and the negation of the conclusion is closed. Therefore the argument is quantificationally valid.

The tree for the premises and the negation of the conclusion is closed. Therefore the argument is quantificationally valid.

The tree for the negation of the corresponding biconditional is closed. Therefore the sentences are equivalent.

The tree for the negation of the corresponding biconditional is closed. Therefore the sentences are equivalent.

The tree for the negation of the corresponding biconditional is closed. Therefore the sentences are equivalent.

The tree for the negation of the corresponding biconditional is closed. Therefore the sentences are equivalent.

The tree has at least one completed open branch. Therefore the given set does not quantificationally entail the given sentence.

234 SOLUTIONS TO SELECTED EXERCISES ON PP. 496–498

The tree has at least one completed open branch. Therefore the given set does not quantificationally entail the given sentence.

The tree has at least one completed open branch. Therefore the given set does not quantificationally entail the given sentence.

7. If a tree is closed, then on each branch of that tree there is some atomic sentence \mathbf{P} and its negation, ~ \mathbf{P} . One of these sentences occurs subsequent to the other on the branch in question. Let \mathbf{Q} be the latter of the two sentences and let \mathbf{n} be the number of the line on which \mathbf{Q} occurs. Then \mathbf{n} is either the last line of the branch or the second to the last line of the branch. The reason is that once both an atomic sentence and its negation have been added to a branch, that branch is closed and no further sentences can be added to the branch after the current decomposition has been completed. (Some decomposition rules do add two sentences to each branch passing through the sentence being decomposed.) Hence such a branch is finite—for no infinite branch can have a last member.

9. No. For example, consider the sentence ' $(\exists x)$ (Fx & ~ Fb)' and its substitution instance 'Fb & ~ Fb'. Clearly, every tree for the unit set of the latter sentence closes, but the systematic tree for the unit set of ' $(\exists x)$ (Fx & ~ Fb)' does not close. Rather it has a completed open branch:

1.	$(\exists x) (Fx \& \sim Fb) \checkmark$		SM	
2.	Fa & ~ Fb ≁	Fb & ~ Fb≠	1 3D2	
3.	Fa	Fb	2 &D	
4.	~ Fb	\sim Fb	2 &D	
		X		

11. Since it is already specified that stage 1 is done before stage 2 and stage 2 before stage 3, and stage 3 before stage 4, we would have to specify the order in which work within each stage is to be done, and what constants are to be used in what order.

Section 9.5E

1. a.	1.	$(\forall x)Fxx$	SM
	2.	$(\exists x) (\exists y) \sim Fxy \checkmark$	SM
	3.	$(\forall x)x = a$	SM
	4.	(∃y) ~ Fby ∕∕	2 3D
	5.	~ Fbc	4 3D
	6.	Faa	$1 \forall D$
	7.	c = a	$3 \forall D$
	8.	Fac	6, 7 = D
	9.	b = a	$3 \forall D$
	10.	Fbc	8, 9 =D
		×	

The tree is closed. Therefore the set is quantificationally inconsistent.

The tree is closed. Therefore the set is quantificationally inconsistent.

e. 1.	$(\forall x) ((Fx \& \sim Gx) \supset \sim x = a)$	SM
2.	Fa & ∼ Ga⊭	SM
3.	Fa	2 &D
4.	~ Ga	2 &D
5.	(Fa & ~ Ga) \supset ~ a = a	$1 \forall D$
2		
6.	\sim (Fa & \sim Ga) \checkmark \sim a = a	$5 \supset D$
	×	
7.	~ Fa ~~~ Ga	$6 \sim \&D$
8.	× Ga	$7 \sim \sim D$
	×	

The tree is closed. Therefore the set is quantificationally inconsistent.

g. 1.	$(\forall \mathbf{x})(\mathbf{x} = \mathbf{a})$	$\supset Gxf(b))$	SM
2.	~ (∃x)Gx	$f(\mathbf{x})$	SM
3.	$f(\mathbf{a}) =$	<i>f</i> (b)	SM
4.	$(\forall \mathbf{x}) \sim 0$	$Gxf(\mathbf{x})$	$2 \sim \exists D$
5.	$a = a \supset C$	Gaf(b)	$1 \forall D$
6.	~ a = a	Gaf(b)	$5 \supset D$
7.	×	$\sim Gaf(a)$	$4 \forall D$
8.		Gaf(a)	3, 6 =D
		×	

The tree is closed. Therefore the set is quantificationally inconsistent.

i. 1.	$(\exists \mathbf{x}) \sim \mathbf{x} = g(\mathbf{x})\mathbf{i}$	SM
2.	$(\forall \mathbf{x}) (\forall \mathbf{y}) \mathbf{x} = g(\mathbf{y})$	SM
3.	$\sim a = g(a)$	1 ∃D
4.	$(\forall y)a = g(y)$	2 ∀D
5.	a = g(a)	4 ∀D
	×	

The tree is closed. Therefore the set is quantificationally inconsistent.

k. 1.	(∀x)[Hx	$\supset (\forall y) Txy]$	SM
2.	(∃x)	$Hf(\mathbf{x})$	SM
3.	~ (∃	x)Txx	SM
4.	H	$I_f(a)$	2 3D
5.	$(\forall x)$	~ Txx	3 ~ ∃D
6.	$Hf(a) \supset (a)$	$(\forall y)Tf(a)y$	$1 \forall D$
			$6 \supset D$
7.	$\sim Hf(a)$	$(\forall y) T f(a) y)$	
	×	Tf(a)f(a)	$7 \forall D$
		$\sim Tf(a)f(a)$	$5 \forall D$
		X	

The tree is closed. Therefore the set is quantificationally inconsistent.

m. 1.	(∃x)F	$\mathbf{x} \supset (\exists \mathbf{x}) (\exists \mathbf{y}) f(\mathbf{y}) = \mathbf{x} \mathbf{\mu}$	SM
2.		$(\exists x)Fx \checkmark$	SM
3.		Fa	2 3D
4.	$\sim (\exists \mathbf{x}) \mathbf{F} \mathbf{x} \mathbf{\varkappa}$	$(\exists \mathbf{x}) (\exists \mathbf{y}) f(\mathbf{y}) = \mathbf{x} \mathbf{\mu}$	$1 \supset D$
5.	(∀x)~Fx		4 ~ ∃
6.	~Fa		$5 \forall D$
7.	×	$(\exists y) f(y) = b \checkmark$	4 3D
8.		$f(\mathbf{c}) = \mathbf{b}$	7 3D
		0	

The tree has a completed open branch. Therefore the set is quantificationally consistent.

The literals 'Fa', and 'f(c) = b' on the completed open branch will be be true on any interpretation that makes the following assignments:

UD: $\{2, 4, 6\}$ a: 6 b: 4 c: 2 f(x): x^2 Fx: x is even 2.a. 1. $\sim (a = b \equiv b = a) \checkmark$ SM 2. $a = b \qquad \sim a = b$ $1 \sim \equiv D$ 3. $\sim b = a$ b = a $1 \sim \equiv D$ 4. $\sim a = a$ $\sim b = b$ 2, 3 =D \times \times

The tree is closed. Therefore ' $a = b \equiv b = a$ ' is quantificationally true.

c. 1.	~ ((Gab & ~ Gba) \supset ~ a = b)	SM
2.	Gab & ∼ Gba⊭	$1\sim \supset D$
3.	~ ~ a = b	$1\sim \supset D$
4.	Gab	2 &D
5.	~ Gba	2 &D
6.	a = b	3 ~ ~ D
7.	Gaa	4, 6 =D
8.	~ Gaa	5, 6 =D
	×	

The tree is closed. Therefore the sentence '(Gab & ~ Gba) \supset ~ a = b' is quantificationally true.

e.	1.	~	$(Fa \equiv (\exists x))$	$(\mathbf{x} \& \mathbf{x} = \mathbf{a}))$	SM
	2.		Fa	~ Fa	$1\sim\equiv D$
	3.	$\sim (\exists x) (Fx)$	& $x = a$)	$(\exists x) (Fx \& x = a) \checkmark$	$1 \sim \equiv D$
	4.	$(\forall \mathbf{x}) \sim (\mathbf{F})$	x & x = a		$3 \sim \exists D$
	5.	~ (Fa &	a = a)		$4 \forall D$
			\frown		
	0		\mathbf{X}		K 0.D
	6.	~ Fa	$\sim a = a$	I	5 ~ &D
	7.	\times	\times	Fb & b = a \checkmark	3 3D
	8.			\mathbf{Fb}	7 &D
	9.			$\mathbf{b} = \mathbf{a}$	7 &D
1	0.			~ Fb	2, 9 =D
				×	

The tree is closed. Therefore the sentence 'Fa $\equiv (\exists x) (Fx \& x = a)$ ' is quantificationally true.

g.	1.	$\sim ((\forall x)x = a \supset ((\exists x)Fx \supset (\forall x)Fx)) \checkmark$	SM
	2.	$(\forall \mathbf{x})\mathbf{x} = \mathbf{a}$	$1\sim \supset \mathrm{D}$
	3.	$\sim ((\exists x)Fx \supset (\forall x)Fx) \checkmark$	$1\sim \supset \mathrm{D}$
	4.	$(\exists x)Fx \checkmark$	3 ~ ⊃D
	5.	~ $(\forall x)Fx \checkmark$	3 ~ ⊃D
	6.	$(\exists x) \sim Fx \checkmark$	$5 \sim \forall D$
	7.	Fb	4 3D
	8.	~ Fc	6 ∃D
	9.	c = a	$2 \forall D$
	10.	b = a	$2 \forall D$
	11.	c = b	9, 10 =D
	12.	Fc	7, 11 =D
		×	

The tree is closed. Therefore the sentence ' $(\forall x)x = a \supset ((\exists x)Fx \supset (\forall x)Fx)$ ' is quantificationally true.

i. 1.	$(\forall \mathbf{x})(\forall \mathbf{y}) \sim \mathbf{x} = \mathbf{y}$	SM
2.	$(\forall y) \sim a = y$	$1 \forall D$
3.	$\sim a = a$	2 ∀D
	×	

The tree is closed. Therefore the sentence ' $(\forall x)(\forall y) \sim x = y$ ' is quantificationally false.

k. 1. 2. 3.	$(\exists x) (\exists y) \sim x = y \checkmark$ $(\exists y) \sim a = y \checkmark$ $\sim a = b$	SM 1 ∃D 2 ∃D
1. 2. 3. 4. 5. 6.	$ \begin{array}{l} \sim (\exists x) (\exists y) \sim x = y \checkmark \\ (\forall x) \sim (\exists y) \sim x = y \cr \sim (\exists y) \sim a = y \checkmark \\ (\forall y) \sim a = y \checkmark \\ (\forall y) \sim a = a \checkmark \\ a = a \end{array} $	SM $1 \sim \exists D$ $2 \forall D$ $3 \sim \exists D$ $4 \forall D$ $5 \sim \sim D$
	0	

Both the tree for the given sentence and the tree for its negation have at least one completed open branch. Therefore the given sentence is quantificationally indeterminate.

Both the tree for the given sentence and the tree for its negation have at least one completed open branch. Therefore the given sentence is quantificationally indeterminate.

о.	1.	$\sim (((\exists x)Gax \& \sim (\exists x)Gxa) \supset (\forall x)(Gxa \supset \sim x = a)) \checkmark$	SM
	2.	$(\exists x)$ Gax & ~ $(\exists x)$ Gxa	$1\sim \supset \mathrm{D}$
	3.	$\sim (\forall x) (Gxa \supset \sim x = a) \checkmark$	$1\sim \supset \mathrm{D}$
	4.	(∃x)Gax 🖊	2 &D
	5.	~ (∃x)Gxa⊭	2 &D
	6.	$(\forall x) \sim Gxa$	$5 \sim \exists D$
	7.	$(\exists x) \sim (Gxa \supset \sim x = a) \checkmark$	$3 \sim \forall D$
	8.	\sim (Gba $\supset \sim$ b = a)	7 3D
	9.	Gac	4 3D
1	0.	Gba	8 ~ ⊃D
1	1.	$\sim \sim b = a$	$8\sim \supset D$
1	2.	~ Gba	$6 \forall D$
		X	

The tree is closed. Therefore the sentence ' $[(\exists x)Gax \& \sim (\exists x)Gxa] \supset (\forall x)$ (Gxa $\supset \sim x = a$)' is quantificationally true.

3.a. 1.
$$\sim (\exists \mathbf{x})\mathbf{x} = f(\mathbf{a})$$
 SM
2. $(\forall \mathbf{x}) \sim \mathbf{x} = f(\mathbf{a})$ 1 $\sim \exists \mathbf{D}$
3. $\sim f(\mathbf{a}) = f(\mathbf{a})$ 2 $\forall \mathbf{D}$
 \times

The tree is closed. Therefore the given sentence is quantificationally true.

с. 1.	$\sim (\exists x) (\exists y) x = y$	SM
2.	$(\forall \mathbf{x}) \sim (\exists \mathbf{y})\mathbf{x} = \mathbf{y}$	1 ~ ∃D
3.	$\sim (\exists y)a = y$	$2 \forall D$
4.	$(\forall y) \sim a = y$	3 ~ ∃D
5.	$\sim a = a$	$4 \forall D$
	×	

The tree is closed. Therefore the given sentence is quantificationally true.

e. 1.	$\sim (\forall \mathbf{x}) [\mathbf{G}\mathbf{x} \supset (\exists \mathbf{y}) f(\mathbf{x}) = \mathbf{y}]$	SM
2.	$(\exists \mathbf{x}) \sim [\mathbf{G}\mathbf{x} \supset (\exists \mathbf{y})f(\mathbf{x}) = \mathbf{y}]$	$1 \sim \forall D$
3.	$\sim [Ga \supset (\exists y)f(a) = y]$	2 JD
4.	Ga	3 ~ ⊃D
5.	$\sim (\exists y) f(a) = y$	3 ~ ⊃D
6.	$(\forall y) \sim f(a) = y$	$5 \sim \exists D$
7.	$\sim f(\mathbf{a}) = f(\mathbf{a})$	$7 \forall D$
	×	

The tree is closed. Therefore the given sentence is quantificationally true.

g. 1.	$\sim (\forall y) \sim [(\forall x)]$	$\mathbf{x} = \mathbf{y} \lor (\forall \mathbf{x}) f(\mathbf{x}) = \mathbf{y} \mathbf{\mathcal{I}}$	SM
2.	$(\exists y) \sim \sim [(\forall x)$	$\mathbf{x} = \mathbf{y} \vee (\forall \mathbf{x}) f(\mathbf{x}) = \mathbf{y} \mathbf{\mathcal{I}}$	$1 \sim \forall D$
3.	$\sim \sim [(\forall x)x$	$= a \lor (\forall x) f(x) = a] \checkmark$	$2 \exists D$
4.	$[(\forall x)x =$	$a \lor (\forall x) f(x) = a] \checkmark$	$3 \sim \sim \exists D$
5.	$(\forall x)x = a$	$(\forall \mathbf{x}) f(\mathbf{x}) = \mathbf{a}$	$4 \vee D$
6.	a = a	$f(\mathbf{a}) = \mathbf{a}$	$5 \forall D$
	0		

The tree has a completed open branch. Therefore the given sentence is not quantificationally true.

The tree is closed. Therefore the sentences '~ a = b' and '~ b = a' are quantificationally equivalent.

c. 1.	$\sim ((\forall x)x = a \equiv$	$(\forall \mathbf{x})\mathbf{x} = \mathbf{b})\mathbf{\varkappa}$	SM
2.	$(\forall \mathbf{x})\mathbf{x} = \mathbf{a}$	$\sim (\forall x)x = a \varkappa$	$1 \sim \equiv D$
3.	$\sim (\forall x)x = b \varkappa$	$(\forall \mathbf{x})\mathbf{x} = \mathbf{b}$	$1 \sim \equiv D$
4.	$(\exists x) \sim x = b \mathbb{I}$		$3 \sim \forall D$
5.	$\sim c = b$		4 ∃D
6.	b = a		$2 \forall D$
7.	c = a		$2 \forall D$
8.	c = b		6, 7 = D
9.	×	$(\exists x) \sim x = a \varkappa$	$2 \sim \forall D$
10.		$\sim c = a$	9 3D
11.		c = b	$3 \forall D$
12.		a = b	$3 \forall D$
13.		c = a	11, 12 =D
		×	

The tree is closed. Therefore the sentences ' $(\forall x)x = a$ ' and ' $(\forall x)x = b$ ' are quantificationally equivalent.

e. 1.	$\sim ((\forall x)(\forall y)x =$	$= y \equiv (\forall x)x = a)$	SM
2.	$(\forall \mathbf{x}) (\forall \mathbf{y}) \mathbf{x} = \mathbf{y}$	$\sim (\forall \mathbf{x})(\forall \mathbf{y})\mathbf{x} = \mathbf{y}\mathbf{\mu}$	$1 \sim \equiv D$
3.	$\sim (\forall x)x = a \varkappa$	$(\forall \mathbf{x})\mathbf{x} = \mathbf{a}$	$1 \sim \equiv D$
4.	$(\exists x) \sim x = a \varkappa$		$3 \sim \forall D$
5.	~ b = a		4 3D
6.	$(\forall y)b = y$		$2 \forall D$
7.	b = a		6 \delta D
8.	×	$(\exists \mathbf{x}) \sim (\forall \mathbf{y})\mathbf{x} = \mathbf{y}\mathbf{\mu}$	$2 \sim \forall D$
9.		$\sim (\forall y)b = y \checkmark$	8 3D
10.		$(\exists y) \sim b = y \checkmark$	$9 \sim \forall D$
11.		$\sim b = c$	10 ∃D
12.		b = a	3 ∀D
13.		c = a	3 ∀D
14.		b = c	12, 13 =D
		×	

The tree is closed. Therefore the sentences $`(\forall x)\,(\forall y)x=y`$ and $`(\forall x)x=a`$ are quantificationally equivalent.

The tree has at least one completed open branch, therefore the given sentences are not quantificationally equivalent.

i. 1.	~ $(((\forall x)Fx \lor (\forall x) \sim 1))$	$\mathbf{Fx}) \equiv (\forall \mathbf{y})(\mathbf{Fy} \supset \mathbf{y} = \mathbf{b}))\mathbf{\nu}$	SM
2. 3. 4. 5. 6. 7.	$(\forall x)Fx \lor (\forall x) \sim Fx \checkmark$ $\sim (\forall y)(Fy \supset y = b) \checkmark$ $(\exists y) \sim (Fy \supset y = b) \checkmark$ $\sim (Fa \supset a = b) \checkmark$ Fa $\sim a = b$	$\sim ((\forall x)Fx \lor (\forall x) \sim Fx) \checkmark (\forall y)(Fy \supset y = b)$	$1 \sim \equiv D$ $1 \sim \equiv D$ $3 \sim \forall D$ $4 \exists D$ $5 \sim \supset D$ $5 \sim \supset D$
8. 9.	$(\forall x)Fx (\forall x) \sim Fx$ $Fa \sim Fa$		2 ∨D 8 ∀D
10.	Fb $ imes$		$8 \forall D$
11.	0	~ $(\forall x)Fx \checkmark$	$2 \sim \lor D$
12.		~ $(\forall x) \sim Fx \checkmark$	$2 \sim \lor D$
13.		$(\exists \mathbf{x}) \sim \mathbf{F} \mathbf{x} \boldsymbol{\checkmark}$	$11 \sim \forall D$
14.		$(\exists x) \sim F x \checkmark$	$12 \sim \forall D$
15.		~ Fa	13 ∃D
16.		~ ~ Fc	14 ∃D
17.		Fc	16 ~ ~ D
18.		$Fc \supset c = b$	3 ∀D
10		$\mathbf{F}_{\mathbf{a}}$ $\mathbf{a} = \mathbf{b}$	18 D
19.		\sim FC C $-$ D	
20		$rac{1}{Fh} \supset h = h \checkmark$	3 ∀D
_ 0.			0.12
21.		$\sim Fb$ $b = b$	$20 \supset D$
22.		~ Fc	19, 21 =D
23.		\times Fa \supset a $=$ b	3 ∀D
24.		\sim Fa $a = b$	23 ⊃D
25.		$\mathbf{b} = \mathbf{c} \qquad \mathbf{b} = \mathbf{c}$	19, 21 $=$ D
26.		c = c $c = c$	19, 25 $=$ D
27.		a = c	19, 24 $=$ D
28.		Fa	27, 17 =D
		×	
29.		\mathbf{Fb}	17, 25 =D
		0	

The tree has at least one completed open branch, therefore the given sentences are not quantificationally equivalent.

k.	1.	$\sim ((\exists x) (x = a \&$	$\mathbf{x} = \mathbf{b} \equiv \mathbf{a} =$	b)	SM
				<	
	2.	$(\exists \mathbf{x}) (\mathbf{x} = \mathbf{a} \& \mathbf{x} = \mathbf{b}) \boldsymbol{\nu}$	$\sim (\exists x) (x =$	a & x = b) ⊭	$1\sim\equiv\!\mathrm{D}$
	3.	~ a = b	a	= b	$1\sim\equiv\!\mathrm{D}$
	4.		$(\forall x) \sim (x =$	= a & x = b)	$2 \sim \exists D$
	5.		~ (a = a a	& a = b)	$4 \forall D$
	6.		~ (b = a	& b = b	$4 \forall D$
	7.		~ a = a	~ a = b	$5 \sim \&D$
	8.	c = a & c = b⊭	×	×	2 3D
	9.	c = a			8 &D
	10.	c = b			8 &D
	11.	$\sim c = b$			3, 9 =D
		×			

The tree is closed. Therefore the sentences $(\exists x) (x = a \& x = b)$ ' and 'a = b' are quantificationally equivalent.

5. a. 1.	a = b & ~ Bab⊭	SM
2.	$\sim \sim (\forall x) Bxx \varkappa$	SM
3.	$(\forall x)Bxx$	$2 \sim \sim D$
4.	a = b	1 &D
5.	~ Bab	1 &D
6.	Bbb	3 ∀D
7.	Bab	4, 6 =D
	×	

The tree is closed. Therefore the argument is quantificationally valid.

c. 1.	$(\forall z) (Gz)$	$\supset (\forall y) (Ky \equiv$	Hzy))	SM
2.	(Ki 8	& Gj) & i = j	j 🖊	SM
3.		~ Hii		SM
4.		Ki & Gj 🖊		2 &D
5.		i = j		2 &D
6.		Ki		4 &D
7.		Gj		4 &D
8.	Gj⊃ ($(\forall y) (Ky \supset H)$	y)	$1 \forall D$
9.	~ Ĝj	(∀y) (Ky	⊃ Hjy)	$8 \supset D$
10.	×	Ki ⊃ I	-Iji ∕∕	9 ∀D
		\frown		
11.		~ Ki	Hji	$10 \supset D$
12.		×	Hii	5, 11 =D
			\times	

e. 1.	a = b	SM
2.	~ (Ka v ~ Kb)	SM
3.	~ Ka	$2 \sim \forall D$
4.	~ ~ Kb	$2 \sim \forall D$
5.	Kb	4 ~ ~ D
6.	Ka	1, 5 =D
	×	

g. 1.	$(\forall x) (x = a \lor x =$	b) SM
2.	(∃x)(Fxa & Fbx) 	SM
3.	$\sim (\exists x)Fxx$	SM
4.	$(\forall x) \sim Fxx$	$3 \sim \exists D$
5.	Fca & Fbc	2 ∃D
6.	Fca	5 &D
7.	Fbc	5 &D
8.	$c = a \lor c = b \checkmark$	• 1 ∀D
9.	\frown	
10.	c = a $c =$	b 8 ∨D
11.	Fcc	6, 10 =D
12.	F	Fcc $7, 10 = D$
13.	~ Fcc ~ F	Tcc $4 \forall D$
	× ×	< compared with the second sec

i. 1.	$(\forall x) (\forall y) (Fxy)$	∨ Fyx)	SM	
2.	a = b		SM	
3.	~ $(\forall x)$ (Fxa \lor]	Fbx)	SM	
4.	$(\exists x) \sim (Fxa \lor f)$	Fbx)	$3 \sim \forall D$	
5.	\sim (Fca \vee Fb	c) 🖊	4 3D	
6.	~ Fca		$5 \sim \forall D$	
7.	~ Fbc		$5 \sim \forall D$	
8.	$(\forall y)$ (Fay \lor 1	Fya)	$1 \forall D$	
9.	Fac \lor Fca	1	$8 \forall D$	
10.	Fac	Fca	9 \U007D	
11.	~ Fac	\times	2, 7 = D	
	×			

The tree is closed. Therefore the argument is quantificationally valid.

k. 1.	$(\forall x) (Fx)$	$\equiv \sim Gx)$	SM
2.	I	Fa	SM
3.	0	Ъb	SM
4.	~ ~ a	= b	SM
5.	a =	= b	$4 \sim \sim D$
6.	$Fa \equiv f$	⊼ Ga⊭	$1 \forall D$
7.	Fa	~ Fa	$6 \equiv D$
8.	~ Ga	~ ~ Ga	$6 \equiv D$
9.	Ga	×	3, 5 = D
	\times		

m.	1.	$(\forall \mathbf{x}) (\forall \mathbf{y}) \mathbf{x} = \mathbf{y}$	SM
	2.	$\sim \sim (\exists x) (\exists y) (Fx \& \sim Fy) \checkmark$	SM
	3.	$(\exists x) (\exists y) (Fx \& \sim Fy) \checkmark$	$2 \sim \sim D$
	4.	(∃y)(Fa & ~ Fy) ∕∕	3 3D
	5.	Fa & ~ Fb	4 3D
	6.	Fa	5 &D
	7.	~ Fb	5 &D
	8.	$(\forall y)a = y$	$1 \forall D$
	9.	a = b	8 ∀D
	10.	~ Fa	7, 9 =D
		×	

The tree is closed. Therefore the argument is quantificationally valid.

q.	1.	()	$\forall \mathbf{x}$) ($\forall \mathbf{y}$) (Hxy $\equiv \sim$ Hy	x)	SM
î	2.	(∃z	$(Hxf(x) \& \sim Hf(x))$	× 🖊	SM
	3.		$\sim \sim (\forall \mathbf{x}) f(\mathbf{x}) = \mathbf{x} \checkmark$		SM
	4.		$(\forall \mathbf{x}) f(\mathbf{x}) = \mathbf{x}$		3 ~ ~ D
	5.		$Haf(a) \& \sim Hf(a)a$	r	2 ∃D
	6.		Haf(a)		5 &D
	7.		$\sim Hf(a)a$		5 &D
	8.		$(\forall y)$ (Hay $\equiv \sim$ Hya)		$1 \forall D$
	9.		Haa ≡ ~ Haa⊭		$5 \forall D$
	10.	Haa		~ Haa	$9 \equiv D$
	11.	~ Haa		~ ~ Haa	$9 \equiv D$
	12.	×		Haa	11 ~ ~ D
				×	

s.	1.	$(\forall \mathbf{x}) [\mathbf{P}\mathbf{x} \supset (\mathbf{O}\mathbf{x} \ \mathbf{v} \sim \mathbf{x} = f(\mathbf{b})]$)] SM
	2.	$(\exists x) [(Px \& \sim Ox) \& x = f(b)]$]∕∕ SM
	3.	~ Ob	SM
	4.	(Pa & ~ Oa) & a = $f(b)$	2 3D
	5.	Pa & ∼ Oa⊭	4 &D
	6.	a = f(b)	4 &D
	7.	Pa	5 &D
	8.	~ Oa	5 &D
	9.	$Pa \supset (Oa v \sim a = f(b))$	1 \delta D
	10.	$Pb \supset (Ob v \sim b = f(b))$	$1 \forall D$
	11.	\sim Pa Oa v \sim a = $f(b)$) 9 ⊃D
		×	
		Oa	$\sim a = f(b)$ 11 $\vee D$
		×	×

6. a. 1. 2. 3. 4. 5. 6	(∀x) (Fx ~ (\ Ea ⊃	$ (\exists y) (Gyx \& \sim y = x)) (\exists x) Fx \checkmark (\exists x) (\exists y) \sim x = y \checkmark \forall x) \sim (\exists y) \sim x = y Fa (\exists y) (Gy) \sim x = y (\exists x) (Gy) \sim x = y) (\exists x) (Gyx \& \sim y = x)) = 0 $	SM SM SM 3 ~ ∃D 2 ∃D
0.	га 🗅	$(\Box y)(Gya \propto -y - a)$	1 VD
7.	~ Fa	$(\exists y) (Gya \& \sim y = a) \checkmark$	$6 \supset D$
8.	\times	Gba & ~ b = a \checkmark	$7 \exists D$
9.		Gba	8 &D
10.		~ b = a	8 &D
11.		$\sim (\exists y) \sim a = y \checkmark$	$4 \forall D$
12.		$\sim (\exists y) \sim b = y \checkmark$	$4 \forall D$
13.		$(\forall y) \sim \sim a = y$	$11 \sim \exists D$
14.		$(\forall y) \sim \sim b = y$	$12 \sim \exists D$
15.		~ ~ a = a	13 ∀D
16.		~ ~ a = b	13 ∀D
17.		~ ~ b = a	14 ∀D
18.		~ ~ b = b	14 ∀D
19.		a = a	$15 \sim \sim D$
20.		a = b	$16 \sim \sim D$
21.		$\mathbf{b} = \mathbf{a}$	$17 \sim \sim D$
22.		$\mathbf{b} = \mathbf{b}$	18 ~ ~ D
23.		$\sim b = b$	10, 21 =D
		×	

The tree is closed. Therefore the alleged entailment does hold.

c. 1.	$(\forall x)$	$(Fx \supset \sim x = a)$	SM
2.		$(\exists x)Fx \checkmark$	SM
3.	~ (∃	$(\exists y) \sim x = y \checkmark$	SM
4.		Fb	2 ∃D
5.	(∀x)	$) \sim (\exists y) \sim x = y$	$3 \sim \exists D$
6.	Fb	$b \supset \sim b = a \varkappa$	$1 \forall D$
		\frown	
7.	~ Fb	~ b = a	$6 \supset D$
8.	×	~ (∃y) ~ a = y⊭	$5 \forall D$
9.		$(\forall y) \sim \sim a = y$	$8 \sim \exists D$
10.		~ ~ a = b	9 ∀D
11.		a = b	10 ~ ~ D
12.		$\sim a = a$	7, 11 =D
		×	

The tree is closed. Therefore the alleged entailment does hold.

e. 1.	$(\exists w)(\exists z) \sim w = z \varkappa$	SM
2.	(∃w)Hw	SM
3.	\sim (\exists w) \sim Hw \blacktriangleright	SM
4.	$(\forall w) \sim \sim Hw$	$3 \sim \exists D$
5.	$(\exists z) \sim a = z \varkappa$	$1 \exists D$
6.	Hb	2 3D
7.	~ a = c	$5 \exists D$
8.	~ ~ Ha	$4 \forall D$
9.	~ ~ Hb	$4 \forall D$
10.	~ ~ Hc	$4 \forall D$
11.	На	$8 \sim \sim D$
12.	Hb	9 ~ ~ D
13.	Hc	$10 \sim \sim D$
	0	

The tree has a completed open branch. Therefore, the alleged entailment does not hold.

g. 1.	$(\forall x) (\forall y) ((Fx \equiv Fy) \equiv x = y)$	SM
2.	$(\exists z)$ Fz	SM
3.	$\sim (\exists x) (\exists y) (\sim x = y \& (Fx \& \sim Fy)) \varkappa$	SM
4.	$(\forall \mathbf{x}) \sim (\exists \mathbf{y}) (\sim \mathbf{x} = \mathbf{y} \& (\mathbf{F}\mathbf{x} \& \sim \mathbf{F}\mathbf{y}))$	$3 \sim \exists D$
5.	Fa	2 JD
6.	$\sim (\exists y) (\sim a = y \& (Fa \& \sim Fy)) \varkappa$	$4 \forall D$
7.	$(\forall y) \sim (\sim a = y \& (Fa \& \sim Fy))$	$6 \sim \exists D$
8.	~ (~ a = a & (Fa & ~ Fa))	$7 \forall D$
9.	$(\forall y) ((Fa \equiv Fy) \equiv a = y)$	$1 \forall D$
10.	$(Fa \equiv Fa) \equiv a = a \mu$	9 ∀D
11.	$\sim \sim a = a \varkappa \sim (Fa \& \sim Fa) \varkappa$	$8 \sim \&D$
12.	a = a	11 ~ ~ D
13.	∕ ~ Fa ~ ~ Fa ∕∕	11 ~ &D
14.	X Fa	13 ~ ~ D
15.	$Fa \equiv Fa \checkmark \sim (Fa \equiv Fa) \checkmark Fa \equiv Fa \checkmark \sim (Fa \equiv Fa) \checkmark$	$10 \equiv D$
16.	$a = a \qquad \sim a = a \qquad a = a \qquad \sim a = a$	$10 \equiv D$
17.	\wedge × \wedge ×	
18.	Fa ~ Fa Fa ~ Fa	$15 \equiv D$
19.	Fa ~ Fa Fa ~ Fa	$15 \equiv D$
20.	0 X 0 X	

The tree has at least one completed open branch. Therefore, the alleged entailment does not hold.

The tree is closed. Therefore the entailment holds.

Section 9.6E

1. a. 1.	$(\forall \mathbf{x}) (\forall \mathbf{y}) [$	$a = g(y) \supset$	Gxy]	SM
2.	~	(∃x)Gax		SM
3.	(`	∀x) ~ Gax		2 ~ED
4.	(∀y)[~	$a = g(y) \supset Ga$	ay]	$1 \forall D$
5.		~ Gaa		$3 \forall D$
6.	~ a =	$g(a) \supset Gaa \varkappa$	r	$4 \forall D$
7.	~ ~ a = g	g(a)	Gaa	$6 \supset D$
8.	a = g	(a)	\times	$7 \sim \sim D$
9.	$a \stackrel{\checkmark}{=} g(a)$	b = g(a)		8 CTD
10.	a = a	a = a		8, 8 =D
11.	0	a = b		9, 8 =D
12.		b = a		8, 9 = D

This systematic tree has a completed open branches. Therefore, the set being tested is quantificationally consistent.

This systematic tree is closed. Therefore, the set being tested is quantificationally inconsistent.

e. 1.		$(\forall \mathbf{x}) \mathbf{L} \mathbf{x} f(\mathbf{x})$		SM
2.		$(\exists y) \sim Lf(y)y$		SM
3.		$\sim Lf(a)a$		2 3D2
4.		Laf(a)		$1 \forall D$
5.	a = f(a)		b = f(a)	4 CTD
6.	a = a		$\mathbf{b} = \mathbf{b}$	5, 5 =D
7.	~ Laa		~ Lba	5, 3 =D
8.	Laa		Lba	5, 4 =D
	×		×	

This systematic tree is closed. Therefore the set being tested is quantificationally inconsistent.

This systematic tree a completed open branches (in fact it has two, the left two). Therefore the set being tested is quantificationally consistent.

2. a. 1.	$\sim (\forall \mathbf{x}) (\mathbf{P} f$	$(\mathbf{x}) \supset \mathbf{P}\mathbf{x})$	SM
2.	$(\exists \mathbf{x}) \sim (\mathbf{P}f)$	$\tilde{P}(\mathbf{x}) \supset P\mathbf{x})$	$1 \sim \forall D$
3.	$\sim (Pf(a))$	$(\supset Pa)$	2 3D2
4.	P	f(a)	$3 \supset D$
5.	~	Pa	$3 \supset D$
6.	$a \stackrel{\frown}{=} f(a)$	$\dot{\mathbf{b}} = f(\mathbf{a})$	4 CTD
7.	a = a	$\mathbf{b} = \mathbf{b}$	6, 6 $=$ D
8.	Ра	Pb	4, 6 =D
	×	0	

The tree has a completed open branch. Therefore, the sentence being tested is not quantificationally false and the sentence of which it is the negation, $(\forall x) (Pf(x) \supset Px)$ ' is not quantificationally true.

If we were to complete the indicated missing work, we would have a systematic tree with at least one completed open branch (the left most branch). Therefore, the sentence being tested is not quantificationally false and the sentence of which it is a negation, $(\exists x) (\forall y) x = g(y)$ is not quantificationally true.

If we were to complete the application of CTD and =D on the far right branch we would have a systematic tree with at least one completed open branch. Therefore, the sentence being tested is not quantificationally false, and the sentence of which it is the negation, $(\forall x) (\forall y) (Dh(x,y) \supset Dh(y,x))$ ' is not quantificationally true.

3. a.	1.	$\sim (\forall \mathbf{x}) (\exists \mathbf{y}) \mathbf{y} = f(f(\mathbf{x})) \boldsymbol{\nu}$	*		SM
	2.	$(\exists \mathbf{x}) \sim (\exists \mathbf{y})\mathbf{y} = f(f(\mathbf{x}))\mathbf{\nu}$			$1 \sim \forall D$
	3.	$\sim (\exists y)y = f(f(a)) \checkmark$			2 3D2
	4.	$(\forall y) \sim y = f(f(a))$			$3 \sim \exists D$
	5.	$\sim a = f(f(a))$			$4 \forall D$
	6.	a = f(f(a)) ×	$\mathbf{b} = f(f(\mathbf{a}))$		5 CTD
	_				
	7.	a = f(a)	$\mathbf{b} = f(\mathbf{a})$	c = f(a)	6 CTD
	8.	$\mathbf{b} = \mathbf{b}$	$\mathbf{b} = \mathbf{b}$	$\mathbf{b} = \mathbf{b}$	6, 6 =D
	9.	a = a		c = c	7, 7 =D
1	0.	$\sim a = f(a)$	$\sim a = f(b)$	$\sim a = f(c)$	7, 5 =D
1	11.	×	$\mathbf{b} = f(\mathbf{b})$	$\mathbf{b} = f(\mathbf{c})$	7, 6 =D
1	12.		-	~ a = b	10, 11 =D
1	13.		$\sim \mathbf{b} = f(f(\mathbf{a}))$	\sim b = $f(f(a))$	$4 \forall D$
1	14.			$\sim c = f(f(a))$	$4 \forall D$
1	15.		$\sim \mathbf{b} \stackrel{!}{=} f(\mathbf{b})$	$\sim \mathbf{b} = f(\mathbf{c})$	7, 13 =D
			X	×	

The tree is closed. Therefore '~ $(\forall x) (\exists y)y = f(f(x))$ ' is quantificationally false and ' $(\forall x) (\exists y)y = f(f(x))$ ' is quantificationally true.

The tree for the negation of the given sentence has at least one completed open branch, and the tree for the given sentence has at least one completed open branch. Therefore the given sentence is quantificationally indeterminate.

The tree has one completed open branch. Therefore the sentence $(\forall x) (\exists y)y = f(f(x))$ is not quantificationally false.

1.		~ (\	$(\exists \mathbf{y})\mathbf{y} = f(f(\mathbf{y})\mathbf{y})$	x))	SM
2.		(∃x)	$\sim (\exists y)y = f(f(y))$	x))	$1 \sim \forall D$
3.		~	$(\exists y)y = f(f(a))$		2 3D2
4.		(`	$\forall \mathbf{y} \rangle \sim \mathbf{y} = f(f(\mathbf{a}))$.))	3 ~ ∃D
5.			$\sim a = f(f(a))$, ,	$4 \forall D$
6.	a = f(a)		b = f(a)		5 CTD
7.	a = a		$\mathbf{b} = \mathbf{b}$		6. $6 = D$
8.	$\sim a = f(a)$		$\sim a = f(b)$		6. 5 = D
9.	×		$\sim \mathbf{b} = f(f(\mathbf{a}))$		4 ∀D
10.		a = f(b)	$\mathbf{b} = f(\mathbf{b})$	c = f(b)	8 CTD
11.		a = a	5,	c = c	10, 10 = D
12.		~ a = a	~ a = b	~ a = c	10, 8 = D
13.		×	$\sim b = f(b)$	$\sim b = f(b)$	6, 9 = D
14.			$\sim b = b$	$\sim b = c$	10, 13 = D
15.			×	$\sim c = f(f(a))$	$4 \forall D$
16.				$\sim c = f(b)$	6, 15 =D
17.				$\sim c = c$	10, 16 =D
				×	

The tree is closed. Therefore '~ $(\forall x) (\exists y)y = f(f(x))$ ' is quantificationally false and ' $(\forall x) (\exists y)y = f(f(x))$ ' is quantificationally true.

The tree for the premises and the negation of the conclusion is closed. Therefore, the argument being tested is quantificationally valid.

The tree has a completed open branch. Therefore the sentences are not quantificationally equivalent.

c. 1.
$$\sim [(\exists x)x = x = (\exists x)x = f(x)] \checkmark$$
 SM

The systematic tree has at least one completed open branch. Therefore the sentences are not quantificationally equivalent.

7. a. 1.	$(\forall \mathbf{x}) (\forall \mathbf{y}) \mathbf{x} = g(\mathbf{x}, \mathbf{y})$	SM
2.	$\sim (\forall \mathbf{x})\mathbf{x} = g(\mathbf{x},\mathbf{x})\boldsymbol{\nu}$	SM
3.	$(\exists \mathbf{x}) \sim \mathbf{x} = g(\mathbf{x}, \mathbf{x}) \mathbf{i}$	$2 \sim \forall D$
4.	$\sim a = g(a,a)$	3 3D2
5.	$(\forall y)a = g(a,y)$	$1 \forall D$
6.	a = g(a,a)	$1 \forall D$
	×	

This tree is closed. Therefore, the alleged entailment does hold.

c. 1.	~ (∀x	$\mathbf{x} = f(f(\mathbf{x}))$		SM
2.	~ (∀:	$\mathbf{x}\mathbf{x} = f(\mathbf{x})\mathbf{i}$		SM
3.	~ (∃x)	$\sim x = f(a)$		$2 \sim \forall D$
4.	~	a = f(a)		3 3D
5.	а	$= f(f(\mathbf{a}))$		$1 \forall D$
6.	a = f(a)	$\mathbf{b} = f$	(a)	4 CTD
7.	×	~ a =	b	4, 6 =D
8.		a = f((b)	5, 6 =D
9.		b =	b	6, 6 =D
10.		a =	a	8, 8 =D
11.		$\mathbf{b} = f(f$	(b))	$1 \forall D$
10.	a =	$f(\mathbf{b})$ $\mathbf{b} = f(\mathbf{b})$	(b) $c = f(b)$	o) 8 CTD
	()		

The tree has at least one completed one branch. Therefore the alleged entailment does not hold.