CHAPTER SEVEN

Section 7.2E 1.a. 'The President' is a singular term, 'Democrat' is not x is a Democrat ('w' or 'y' or 'z' may be used in place of 'x') c. 'Sarah' and 'Smith College' are the singular terms x attends Smith College Sarah attends x x attends y e. The singular terms are 'Charles' and 'Rita' w and Rita are brother and sister Charles and w are brother and sister w and z are brother and sister g. The singular terms are '2', '4', and '8' x times 4 is 8 2 times x is 8 2 times 4 is y x times y is 8 x times 4 is y 2 times x is y x times y is z i. The singular terms are '0', '0', and '0' z plus 0 is 0 0 plus z is 00 plus 0 is z w plus y is 0 w plus 0 is y 0 plus w is y w plus y is z 2. Herman is larger than Herman. Herman is larger than Juan. Herman is larger than Antonio. Juan is larger than Herman. Juan is larger than Juan. Juan is larger than Antonio. Antonio is larger than Herman. Antonio is larger than Juan. Antonio is larger than Antonio.

Herman is to the right of Herman. Herman is to the right of Juan. Herman is to the right of Antonio. Juan is to the right of Herman. Juan is to the right of Juan. Juan is to the right of Antonio. Antonio is to the right of Herman. Antonio is to the right of Juan. Antonio is to the right of Antonio.

Herman is larger than Herman but smaller than Herman. Herman is larger than Herman but smaller than Juan. Herman is larger than Herman but smaller than Antonio. Herman is larger than Juan but smaller than Herman. Herman is larger than Juan but smaller than Juan. Herman is larger than Antonio but smaller than Herman. Herman is larger than Antonio but smaller than Herman. Herman is larger than Antonio but smaller than Antonio.

Juan is larger than Herman but smaller than Herman. Juan is larger than Herman but smaller than Juan. Juan is larger than Herman but smaller than Antonio. Juan is larger than Juan but smaller than Herman. Juan is larger than Juan but smaller than Juan. Juan is larger than Juan but smaller than Antonio. Juan is larger than Antonio but smaller than Herman. Juan is larger than Antonio but smaller than Juan. Juan is larger than Antonio but smaller than Juan.

Antonio is larger than Herman but smaller than Herman. Antonio is larger than Herman but smaller than Juan. Antonio is larger than Herman but smaller than Antonio. Antonio is larger than Juan but smaller than Herman. Antonio is larger than Juan but smaller than Juan. Antonio is larger than Juan but smaller than Antonio. Antonio is larger than Antonio but smaller than Herman. Antonio is larger than Antonio but smaller than Herman. Antonio is larger than Antonio but smaller than Juan.

EXERCISES 7.3E

1. The *PL* analogs of the sentences of English, in the same order given in the *Solution Manual* answers to exercise 7.2E 2, are

Lhh Lhj Lha Ljh Ljj Lja Lah Laj Laa Rhh Rhj Rha Rjh Rjj Rja Rah Raj Raa Shhh Shhj Shha Shjh Shjj Shja Shah Shaj Shaa Sjhh Sjhj Sjha Sjjh Sjjj Sjja Sjah Sjaj Sjaa

Co.b.b.
Sahi
Saha
Saih
Saji
Saja
Saah
Saai
Saaa
2. a. Bai
c. Bbn
e. Beh
g. (Aph & Ahn) & Ank
i. $Aih \equiv Aip$
k. ([(Lap & Lbp) & (Lcp & Ldp)] & Lep) & ~ ([(Bap ∨ Bbp) ∨
$(Bcp \lor Bdp)] \lor Bep)$
m. (Tda & Tdb) & (Tdc & Tde)
o. ~ ([(Tab \lor Tac) \lor (Tad \lor Tae)] \lor Taa) & [(Lab & Lac) &
(Lad & Lae)]
 3. a. (Ia & Ba) & ~ Ra c. (Bd & Rd) & Id e. Ib ⊃ (Id & Ia) g. Lab & Dac
i. ~ (Lca \lor Dca) & (Lcd & Dcd)
k. Acb \equiv (Sbc & Rb)
m. (Sdc & Sca) \supset Sda
0. (Lcb & Lba) \supset (Dca & Sca)
q. Ku $\approx [Ka \lor (Kb \lor Kc)]$
4. a.UD: Margaret, Todd, Charles, and Sarah
Gx: x is good at skateboarding
Lx: x likes skateboarding
HX: X wears neadgear
EXAMPLE A Series and A Series
Svy, x is more skillful than y (at skateboarding)
c: Charles
m. Margaret
s' Sarah
t: Todd

(Lm & Lt) & ~ (Gm ∨ Gt) Gc & ~ Lc Gs & Ls [(Hm & Ht) & (Hc & Hs)] & [(Kc & Ks) & ~ (Km ∨ Kt)] [(Rsm & Rst) & Rsc] & [(Scs & Scm) & Sct]

Note: it may be tempting to use a two-place predicate to symbolize being good at skateboarding, for example, 'Gxy', and another two-place predicate to symbolize liking skateboarding. So too we might use two-place predicates to symbolize wearing headgear and wearing kneepads. Doing so would require including skateboarding, headgear, and knee pads in the universe of discourse. But things are now a little murky. Skateboarding is more of an activity than a thing (although activities are often the "topics of conversation" as when we say that some people like, for example, hiking, skiing, and canoeing while others don't). And while we might include all headgear and kneepads in our universe of discourse, we do not know which ones the characters in our passage wear, so we would be hard pressed to name the favored items.

Moreover, here there is no need to invoke these two-place predicates because here we are not asked to investigate logical relations that can only be expressed with two-place predicates. The case would be different if the passage included the sentence 'If Sarah is good at anything she is good at sailing' and we were asked to show that it follows from the passage that Sarah is good at sailing. (On the revised scenario we are told that Sarah is good at skateboarding, and that if she is good at anything—she is, skateboarding—she is good at sailing. So she is good at sailing. Here we are treating skateboarding as *something*, something Sarah is good at. But we will leave these complexities until we have fully developed the language *PL*.)

c. One appropriate symbolization key is

- UD: Andrew, Christopher, Amanda
- Hz: z is a hiker
- Mz: z is a mountain climber
- Kz: z is a kayaker
- Sz: z is a swimmer
- Lzw: z likes w
- Nzw: z is nuts about w
 - a: Andrew
 - c: Christopher
 - m: Amanda

(Ha & Hc) & ~ (Ma ∨ Mc)
(Hm & Mm) & Km
(Ka ∨ Kc) & ~ (Ka & Kc)
~ [(Sa ∨ Sc) ∨ Sm]
((Lac & Lca) & [(Lam & Lma) & (Lmc & Lcm)]) & (Nma & Nam)

Section 7.4E

1.a. $(\forall z)Bz$ c. ~ $(\exists x)Bx$ e. $(\exists x)Bx \& (\exists x)Rx$ g. $(\exists z) Rz \supset (\exists z) Bz$ i. $(\forall y)By \equiv \sim (\exists y)Ry$ **2.**a. $(\exists x) Ox \& (\exists x) Ex$ c. ~ $(\exists x)$ Lxa e. $(\forall x)Gx$ g. $(\exists x) (Px \& Ex)$ i. $(\forall y) [(Py \& Lby) \supset Ey]$ k. $(\exists y)$ (Lby & Lyc) **3.**a. $P_j \supset (\forall x) P_x$ c. $(\exists y) Py \supset (Pj \& Pr)$ e. ~ $\Pr \supset ~ (\exists x) \Pr x$ g. (Pj \supset Pr) & (Pr \supset (\forall x)Px) i. $(\forall y)$ Sy & ~ $(\forall y)$ Py

k. $(\forall x)Sx \supset (\exists y)Py$

Section 7.5E

1.a. A formula but not a sentence (an open sentence): the 'z' in 'Zz' is free. c. A formula and a sentence.

e. A formula but not a sentence (an open sentence): the 'x' in 'Fxz' is free.

g. A formula and a sentence.

i. Not a formula. '~ (∃x)' is an expression of SL, but '(~ ∃x)' is not.
k. Not a formula. Since there is no 'y' in 'Lxx', '(∃y)Lxx' is not a formula. Hence, neither is '(∃x)(∃y)Lxx'.

m. A formula and a sentence.

o. A formula but not a sentence (an open sentence): 'w' in 'Fw' is free.

2.a. A sentence. The subformulas are

$(\exists x) (\forall y) Byx$	(∃x)
$(\forall y)$ Byx	$(\forall y)$
Byx	None

c. Not a sentence. The 'x' in ' $(Bg \supset Fx)$ ' is free. The subformulas are $(\forall x) (\sim Fx \& Gx) \equiv (Bg \supset Fx)$ ≡ $(\forall x) (\sim Fx \& Gx)$ $(\forall x)$ $Bg \supset Fx$ \supset ~ Fx & Gx & ~ Fx ~ Gx None Bg None Fx None e. Sentence. The subformulas are ~ $(\exists x) Px \& Rab$ & $\sim (\exists x) P x$ ~ Rab None $(\exists x) Px$ (∃x) Px None g. Sentence. The subformulas are $\sim [\sim (\forall x) Fx \equiv (\exists w) \sim Gw] \supset Maa$ \supset $\sim [\sim (\forall x) Fx \equiv (\exists w) \sim Gw]$ ~ Maa None $\sim (\forall x) Fx \equiv (\exists w) \sim Gw$ = ~ $(\forall x)Fx$ ~ $(\exists w) \sim Gw$ $(\exists w)$ $(\forall x)Fx$ $(\forall x)$ $\mathbf{F}\mathbf{x}$ None ~ Gw \sim Gw None i. Sentence. The subformulas are $\sim \sim \sim (\exists x) (\forall z) (Gxaz \lor \sim Hazb)$ $\sim \sim (\exists x) (\forall z) (Gxaz \lor \sim Hazb)$ ~ $(\exists x) (\forall z) (Gxaz \lor ~ Hazb)$ ~ $(\exists x) (\forall z) (Gxaz \lor \sim Hazb)$ (∃x) $(\forall z)$ (Gxaz $\lor \sim$ Hazb) $(\forall z)$ $Gxaz \lor \sim Hazb$ \vee Gxaz None ~ Hazb Hazb None

k. Sentence. The subformulas are	
$(\exists x) [Fx \supset (\forall w) (\sim Gx \supset \sim Hwx)]$ $Fx \supset (\forall w) (\sim Gx \supset \sim Hwx)$ Fx $(\forall w) (\sim Gx \supset \sim Hwx)$ $\sim Gx \supset \sim Hwx$ $\sim Gx$ $\sim Hwx$ Gx Hwx	(∃x) ⊃ None (∀w) ⊃ ~ None None
m. A sentence. The subformulas are	
$(Hb \lor Fa) \equiv (\exists z) (\sim Fz \& Gza)$ $Hb \lor Fa$ $(\exists z) (\sim Fz \& Gza)$ Hb Fa $\sim Fz \& Gza$ $\sim Fz$ Gza Fz	≡ ∨ (∃z) None & ~ None None
3. a. $(\forall x) (Fx \supset Ga)$ c. $\sim (\forall x) (Fx \supset Ga)$ e. $\sim (\exists x) Hx$ g. $(\forall x) (Fx \equiv (\exists w) Gw)$ i. $(\exists w) (Pw \supset (\forall y) (Hy \equiv \sim Kyw))$ k. $\sim [(\exists w) (Jw \lor Nw) \lor (\exists w) (Mw \lor Lw)]$ m. $(\forall z) Gza \supset (\exists z) Fz$ o. $(\exists z) \sim Hza$ q. $(\forall x) \sim Fx \equiv (\forall z) \sim Hza$	Quantified Truth-functional Truth-functional Quantified Quantified Truth-functional Quantified Truth-functional Quantified
4.a. Maa & Fa c. ~ (Ca \equiv ~ Ca) e. (Fa & ~ Gb) \supset (Bab \lor Bba) g. ~ (\exists z)Naz \equiv (\forall w) (Mww & Naw) i. Fab \equiv Gba k. ~ (\exists y) (Hay & Hya) m. (\forall y) [(Hay & Hya) \supset (\exists z)Gza]	

5. a. $(\forall y)$ Ray \supset Byy	No
c. $(\forall y) (Rwy \supset Byy)$	No
e. $(\forall y) (Ryy \supset Byy)$	No
g. (Ray \supset Byy)	No
i. Rab \supset Bbb	No
6. a. $(\forall y) \sim \text{Ray} \equiv \text{Paa}$	Yes
c. $(\forall y) \sim \text{Ray} \equiv \text{Pba}$	No
e. $(\forall y) (\sim Ryy \equiv Paa)$	No
g. $(\forall y) \sim \text{Raw} \equiv \text{Paa}$	No
Section 7.6E	
1.a. A-sentence	$(\forall y) (Py \supset Cy)$
c. O-sentence	$(\exists w)$ (Dw & ~ Sw)
e. I-sentence	$(\exists z) (Nz \& Bz)$
g. E-sentence	$(\forall x) (Px \supset \sim Sx)$
i. A-sentence	$(\forall w) (Pw \supset Mw)$
k. A-sentence	$(\forall y) (Sy \supset Cy)$
m. E-sentence	$(\forall y) (Ky \supset \sim Sy)$
o. E-sentence	$(\forall y) (Qy \supset \sim Zy)$
2. a. $(\forall y) (By \supset Ly)$	
c. $(\forall z) (Rz \supset \sim Lz)$	
e. $(\exists x)Bx \& (\exists x)Rx$	
g. $[(\exists z)Bz \& (\exists z)Rz] \& \sim (\exists z)(Bz \& Rz)$	
i. $(\exists y)$ By & $[(\exists y)$ Sy & $(\exists y)$ Ly]	
k. $(\forall w)(Cw \supset Rw) \& \sim (\forall w)(Rw \supset Cw)$	
m. $(\forall y)$ Ry $\vee [(\forall y)$ By $\vee (\forall y)$ Gy]	
o. $(\exists w)$ (Rw & Sw) & $(\exists w)$ (Rw & ~ Sw)	
q. $(\exists x) Ox \& (\forall y) (Ly \supset \sim Oy)$	

3.a. An I-sentence and the corresponding O-sentence of *PL* can both be true. Consider the English sentences 'Some positive integers are even' and 'Some positive integers are not even'. Where the UD is positive integers and 'Ex' is interpreted as 'x is even', these can be symbolized as ' $(\exists x)$ Ex' and ' $(\exists x)$ ~ Ex', respectively, and both sentences of *PL* are true.

An I-sentence and an O-sentence can also both be false. Consider 'Some tiggers are fast' and 'Some tiggers are not fast'. Where the UD is mammals, 'Tx' is interpreted as 'x is a tigger' and 'Fx' as 'x is fast', these become, respectively, ' $(\exists x)$ (Tx & Fx)' and ' $(\exists x)$ (Tx & ~ Fx)' As there are no tiggers, both sentences of *PL* are false. Note, however, that there cannot be an I-sentence and a corresponding O-sentence of the sorts ($\exists x$)A and ($\exists x$) ~ A, where A is anj atomic formula and both the I-sentence and the O-sentence are false. For however A is interpreted, either there is something that satisfies it, or there is not. In the first instance ($\exists x$)A is true, in the second ($\exists x$) ~ A is true.

```
1.a. (\forall z) (Pz \supset Hz)
           c. (\exists z) (Pz & Hz)
           e. (\forall w) [(Hw \& Pw) \supset \sim Iw]
           g. ~ (\forall x) [(Px \lor Ix) \supset Hx]
           i. (\forall y) [(Iy \& Hy) \supset Ry]
           k. (\exists z)Iz \supset Ih
          m. (\exists w) I w \supset (\forall x) (Rx \supset Ix)
           o. ~ (\exists y) [Hy \& (Py \& Iy)]
           q. (\forall z) (Pz \supset Iz) \supset \sim (\exists z) (Pz \& Hz)
           s. (\forall w) (Rw \supset [(Lw \& Iw) \& \sim Hw])
        2.a. (\forall w) (Lw \supset Aw)
           c. (\forall x) (Lx \supset Fx) \& (\forall x) (Tx \supset \sim Fx)
           e. (\exists y) [(Fy \& Ly) \& Cdy]
           g. (\forall z) [(Lz \lor Tz) \supset Fz]
           i. (\exists w) (Tw & Fw) & ~ (\forall w) (Tw \supset Fw)
           k. (\forall x) [(Lx \& Cbx) \supset (Ax \& \sim Fx)]
          m. (\exists z) (Lz \& Fz) \supset (\forall w) (Tw \supset Fw)
           o. ~ Fb & Bb
        3.a. (\forall x) (Ex \supset Yx)
           c. (\exists y) (Ey & Yy) & ~ (\forall y) (Ey \supset Yy)
           e. (\exists z) (Ez & Yz) \supset (\forall x) (Lx \supset Yx)
           g. (\forall w) [(Ew \& Sw) \supset Yw]
           i. (\forall w) [(Lw \& Ew) \supset (Yw \& Iw)]
           k. (\forall x) [(Ex \lor Lx) \supset (Yx \supset Ix)]
          m. ~ (\exists z) [(Pz \& ~ Iz) \& Yz]
           o. (\forall x) [(Ex \& Rxx) \supset Yx]
           q. (\forall x) ([Ex \lor Lx) \& (Rx \lor Yx)] \supset Rxx)
           s. (\forall z) ([Yz \& (Lz \& Ez)] \supset Rzz)
        4.a. (\forall x) [Px \supset (Ux \& Ox)]
           c. (\forall z) [Az \supset \sim (Oz \lor Uz)]
           e. (\forall w) (Ow \equiv Uw)
           g. (\exists y) (Py & Uy) & (\forall y) [(Py & Ay) \supset \sim Uy]
            i. (\exists z) [Pz \& (Oz \& Uz)] \& (\forall x) [Sx \supset (Ox \& Ux)]
           k. ((\exists x) (Sx \& Ux) \& (\exists x) (Px \& Ux)) \& \sim (\exists x) (Ax \& Ux)
        5.a. Two is prime and three is prime.
           c. There is an integer that is even and there is an integer that is odd.
           e. Each integer is either even or odd.
           g. There is an integer that is not larger than one. [Note: that integer
is one itself.]
            i. Each integer is such that if it is even then it is evenly divisible by two.
```

k. Every integer is evenly divisible by one.

m. An integer is evenly divisible by two if and only if it is even.

o. If one is larger than some integer then it is larger than every integer.

q. No integer is prime and evenly divisible by four.

Section 7.8E

1.a. $(\exists y)$ [Sy & (Cy & Ly)] c. ~ $(\forall w) [(Sw \& Lw) \supset Cw]$ e. ~ $(\forall x) [(\exists y) (Sy \& Sxy) \supset Sx]$ g. ~ $(\forall x) [(\exists y) (Sy \& (Dxy \lor Sxy)) \supset Sx]$ i. $(\forall z) [(Sz \& (\exists w) (Swz \lor Dwz)) \supset Lz]$ k. Sr \vee (\exists y)(Sy & Dry) m. (Sr & $(\forall z)[(Dzr \lor Szr) \supset Sz]) \lor (Sj \& (\forall z)[(Dzj \lor Szj) \supset Sz])$ **2.**a. $(\forall x) [Ax \supset (\exists y) (Fy \& Exy)] \& (\forall x) [Fx \supset (\exists y) (Ay \& Exy)]$ c. $\sim(\exists y)$ (Fy & Eyp) e. ~ $(\exists y)$ (Fy & Eyp) & $(\exists y)$ (Cy & Eyp) g. ~ $(\exists w)$ (Aw & Uw) & $(\exists w)$ (Aw & Fw) i. $(\exists w) [(Aw \& \sim Fw) \& (\forall y) [(Fy \& Ay) \supset Ewy]]$ k. $(\exists z) [Fz \& (\forall y) (Ay \supset Dzy)] \& (\exists z) [Az \& (\forall y) (Fy \supset Dzy)]$ m. $(\forall x) [(\forall y) Dxy \supset (Px \lor (Ax \lor Ox))]$ **3.**a. $(\forall x) [Px \supset (\exists y) (Syx \& Bxy)]$ c. $(\forall y) [(Py \& (\forall z)Bzy) \supset (\forall w) (Swy \supset Byw)]$ e. $(\forall w) (\forall x) [(Pw \& Sxw) \supset Bwx] \supset (\forall z) (Pz \supset Wz)$ g. $(\forall x) (\forall y) ([(Px \& Syx) \& Bxy] \supset (\sim Nxy \& \sim Lyx))$ i. $(\exists y) [Py \& (\forall z) (Pz \supset Byz)]$ k. $(\forall z) ((Pz \& Uz) \supset [(\forall w) (Swz \supset Bzw) \lor (\forall w) (Swz \supset Gzw)])$ m. $(\forall w) (\forall x) ([(Pw \& Sxw) \& (Bwx \& Bxw)] \supset (Ww \& Wx))$ o. $(\exists x) (\exists y) [(Px \& Syx) \& \sim Axty]$ q. $(\forall y) (\forall z) ([(Py \& Szy) \& \sim Lzy] \supset (\sim Nzy \& Bzy))$ 4.a. Hildegard sometimes loves Manfred. c. Manfred sometimes loves Hildegard and Manfred always loves Siegfried. e. If Manfred ever loves himself, then he does so whenever Hildegard loves him. g. There is someone no one ever loves. i. There is a time at which someone loves everyone. k. There is always someone who loves everyone. m. No one loves anyone all the time. o. Everyone loves, at some time, himself or herself. **5.**a. An even integer times any integer is even. c. If the sum of a pair of integers is even, then either both integers are even or both are odd. e. There is no prime that is larger than every prime.

g. There are no primes such that their product is prime.

i. There is a prime such that it times any prime is even.

k. The product of a pair of integers is odd if and only if both members of the pair are odd.

m. If a pair of integers are both odd, then their product is odd and their sum is even.

o. The sum of an odd integer and an even integer is odd, and their product is even.

q. There is an integer that is larger than one, that three is larger than, and that is prime and even.

Section 7.9E

1.a. $(\forall x) [(Wx \& \sim x = d) \supset Sx]$

c. $(\forall x)[(Wx \& \sim x = d) \supset [Sx \lor (\exists y)[Sy \& (Dxy \lor Sxy)]]]$

e. [Sdj & $(\forall x)(Sxj \supset x = d)$] & ~ $(\exists x)Dxj$

g. $(\exists x) [(Sxr \& Sxj) \& (\forall y) [(Syr \lor Syj) \supset y = x]]$

i. $(\exists x) (\exists y) [((Dxr \& Dyr) \& (Sx \& Sy)) \& ~ x = y]$

k. $(\exists x)[(Sxj \& Sx) \& (\forall y)(Syj \supset y = x)] \& (\exists x)(\exists y)(([(Sx \& Sy) \& (Dxj \& Dyj)] \& \sim x = y) \& (\forall z)[Dzj \supset (z = x \lor z = y)])$

2.a. Every positive integer is less than some positive integer [or] There is no largest positive integer.

c. There is positive integer than which no integer is less.

e. 2 is even and prime, and it is the only positive integer that is both even and prime.

g. The product of any pair of odd positive integers is itself odd.

i. If either of a pair of positive integers is even, their product is even.

k. There is exactly one prime that is greater than 5 and less than 9.

3.a. $(\forall x) (\forall y) (Nxy \supset Nyx)$

c.

		~/
e.	$(\forall \mathbf{x}) (\forall \mathbf{y}) (\mathbf{Rxy} \supset \mathbf{Ryx})$	Sym
	$(\forall x) (\forall y) (\forall z) [(Rxy \& Ryz) \supset Rxz]$	-
g.	$(\forall x)Txx$	Tra
-	$(\forall x) (\forall y) (\forall z) [(Txy \& Tyz) \supset Txz]$	(in
i.	$(\forall x) (\forall y) (Exy \supset Eyx)$	Sym
	(∀x)Exx	(in
k.	(∀x)Wxx	Sym
	$(\forall x) (\forall y) (Wxy \supset Wyx)$	refl
	$(\forall x) (\forall y) (\forall z) [(Wxy) \& Wyz) \supset Wxz]$	obje
m.	$(\forall x) (\forall y) (\forall z) [(Axy \& Ayz) \supset Axz]$	Tra
о.	(∀x)Lxx	Sym
	$(\forall x) (\forall y) (Lxy \supset Lyx)$	refl
	$(\forall x) (\forall y) (\forall z) [(Lxy \& Lyz) \supset Lxz]$	

Symmetric only Neither reflexive, nor symmetric, nor transitive Symmetric and transitive

Transitive and reflexive in UD: Physical objects) Symmetric and reflexive in UD: People) Symmetric, transitive, and eflexive (in UD: Physical objects) Transitive only Symmetric, transitive, and reflexive (in UD: People) 4.a. Sjc

c. Sjc & $(\forall x)[(Sxc \& \sim x = j) \supset Ojx]$

- e. $(\exists x) [(Dxd \& (\forall y) [(Dyd \& \sim y = x) \supset Oxy]) \& Px]$
- g. Dcd & $(\forall x)[(Dxd \& \sim x = c) \supset Ocx]$
- i. $(\exists x)[(Sxh \& (\forall y)[(Syh \& \sim y = x) \supset Txy]) \& Mcx]$
- k. $(\exists x) [(Bx \& (\forall y) (By \supset y = x)) \&$
- $(\exists w) ((Mx \& (\forall z) (Mz \supset z = w)) \& x = w)]$
- m. $(\exists x) [(Mxc \& Bxj) \& (\forall w) (Bwj \supset x = w)]$

5.a. ~ $(\exists y)a = f(y)$ c. $(\exists x) (Px \& Ex)$ e. $(\forall x) (\exists y)y = f(x)$ g. $(\forall y) (Oy \supset Ef(y))$

i. $(\forall x) (\forall y) [Ot(x,y) \supset Et(f(x), f(y))]$

k.
$$(\forall x) (\forall y) [O_s(x,y) \supset [(O_x \& E_y) \lor (O_y \& E_x)]]$$

- m. $(\forall x) (\forall y) [(Px \& Py) \supset \sim Pt(x,y)]$
- o. $(\forall z) [(Ez \supset Eq(z)) \& (Oz \supset Oq(z)]$
- q. $(\forall x) [Ox \supset Ef(q(x))]$
- s. $(\forall x) [(Px \& \sim x = b) \supset Os(b,x)]$
- u. $(\exists x) (\exists y) [(Px \& Py) \& t(x,y) = f(s(x,y))]$