

 A set of sentences is consistent if and only if

there is at least one truth value assignment

[of the constituents of the set of sentences]

on which all the members of the set are

true.

 We now know how to check for consistency

using a tree, and can recover specific truth-

value assignments on which all members of

a given set come out true (if the set is

consistent).

D
e

fi
n

it
io

n

E
x
p

la
in

e
d

 v
ia

 c
o

n
si

st
e

n
c

y

 A sentence is a contradiction if and only if

it is false on every possible truth-value

assignment of its constituents.

 A sentence , is a contradiction if
and only if { } is inconsistent.

 Since inconsistent sets are sets whose
members can never all be true at
the same time, and since { } has
only one member, that member
must never be true for the set to be
inconsistent.

 A sentence of PL is a contradiction if and

only if { } has a closed truth tree (meaning

{ } is inconsistent).

 If the tree for { } closes, it means that it is

impossible for to be true.

D
e

fi
n

it
io

n

E
x
p

la
in

e
d

 v
ia

 C
o

n
si

st
e

n
c

y

 A sentence of PL is a tautology if and only

if it is true on every possible truth-value

assignment of its constituents.

 A sentence is a tautology if and only if

{~ } is truth-functionally inconsistent.

 Since inconsistent sets are sets whose

members can never all be true, and since

{~ } has only one member and is a

negation, must be always true for ~ to

be never true.

 A sentence is a tautology if and only if

{~ } has a closed truth tree (meaning {~ } is

inconsistent).

 If the tree for {~ } closes, it means that it is

impossible for ~ to be true, which in turn

means it is impossible for to be false.

D
e

fi
n

it
io

n

E
x
p

la
in

e
d

 v
ia

 c
o

n
si

st
e

n
c

y

 A sentence is contingent if and only if it is

neither a tautology nor a contradiction.

 A sentence is contingent if and only if

both {~ } and { } are truth-functionally

consistent.

 Since is either a tautology or a

contradiction if one of the above sets is

inconsistent, is contingent if it is neither a

tautology nor a contradiction.

 A sentence is contingent if and only if

neither {~ } nor { } has a closed truth tree.

 If the tree for {~ } is open and the tree for

{ } is open, then it means that can be

either true or false.

D
e

fi
n

it
io

n

E
x
p

la
in

e
d

 v
ia

 c
o

n
si

st
e

n
c

y

 Sentences and are equivalent if and

only if there is no truth value assignment

on which and have different truth-

values.

 Sentences and are equivalent if and
only if {~()} is inconsistent

 Since only contradictions make sets of
which they are sole members inconsistent,
the negation of a sentence asserting that

 and have different truth-values being
contradictory means that and must
have the same truth-value.

 Sentences and are equivalent if and only if {~(

)} has a closed truth tree.

 If and are equivalent, then () is a

tautology because the two sentences always have

the same truth-value. That would make ~() a

contradiction.

 So to check for equivalence of any two sentences

on a tree, join them with a biconditional, negate

the biconditional, and check for consistency of the

set with that negated biconditional as its only

member.

D
e

fi
n

it
io

n

E
x
p

la
in

e
d

 v
ia

 C
o

n
si

st
e

n
c

y

 A set  of sentences entails a sentence

if and only if there is no truth-value

assignment on which every member of 

is true and is false.

 ╞ if and only if   {~ } is inconsistent.

 A finite set  entails a sentence if and only

if the set   {~ } has a closed tree (is

inconsistent).

 So to check if some finite set entails some

sentence, represent each member of the

set along with the negation of what you’re

checking to see whether the set entails.

 If the table closes, then it is impossible for all

members of the set  to be true while is
false.

 Since validity is simply a special case of

entailment, the same procedure can

demonstrate that validity can be

described in terms of consistency.

 If an argument is valid, then the union of

the set of its premises and the negation

of its conclusion will form an inconsistent

set.

 An argument with a finite number of
premises is valid if and only if the set
consisting of all and only its premises and
the negation of the conclusion has a closed
tree.

 A tree that closes when you include every
premise and the negation of the conclusion
means that the conclusion cannot be false
while the premises are true. (or else that the
premises are inconsistent, in which case
they entail anything)

 All of the previous things remain true in

PL.

 We do, however, need a rule for

decomposing Universal and Existential

quantifiers.

 Those rules are a direct result of the

semantics of quantified sentences.

 D is a non-branching rule:

M. ()

N. (/) M, D

Important: Universally quantified sentences are never
checked off. Since every substitution instance of a true
universally quantified statement is true, an infinite
number of substitution instances can be decomposed
into the tree.

In general, we will extract one substitution instance of a
universal for every individual constant in the branch.

 D is a non-branching rule

M. () 
N. (/) M, D

Important: must be a constant that is foreign to
the branch in which the existentially quantified
sentence is decomposed. When an existentially
quantified sentence is true, we are entitled only
to the truth of a single substitution instance of it,
and we are not entitled to infer any other
properties of while we are at it.

 We can’t really do anything with negated
quantifiers, so we just convert them to
equivalent forms:
› Since ~(x)~ is equivalent to (x) and ~(x)~ is

equivalent to (x):

› We change ‘~() ’ to ‘()~ ’

› We change ‘~() ’ to ‘()~ ’

› And then we check off the negated quantified
sentence.

› These rules are known as ~D and ~D,
respectively

1. (x)(Fx & ~Gx) SM

2. (x)Fx  (x)Gx SM

1. (x)(Fx & ~Gx) SM

2. (x)Fx  (x)Gx SM

Here we have the set members. First, we

will decompose 1. because it doesn’t

branch.

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

Now we do 3. because it doesn’t branch.

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx (x)Gx 2, D

Now we do 2. Next, we convert the
negated universal.

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx (x)Gx 2, D

7. (x)~Fx 6, ~D

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx (x)Gx 2, D

7. (x)~Fx 6, ~D

Now we must

eliminate the

existential

statement, so that

we may check it off.

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx  (x)Gx 2, D

7. (x)~Fx  6, ~D

8. ~Fb 7, D

Remember that the

constant for an

existential must be

foreign to the

branch!

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D

4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx  (x)Gx 2, D

7. (x)~Fx  6, ~D

8. ~Fb 7, D

Now we can see

that we have an

open branch, and

so don’t really have

to bother with the

one on the right, but

lets see what we

can do with that

branch:

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D
4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx  (x)Gx 2, D

7. (x)~Fx  6, ~D

8. ~Fb 7, D
9. Ga 6, D

10.

Using ‘a’ as a

substitution constant

(remembering not to

check off the

universal), we can

close the right

branch, though the

left branch remains

open.

1. (x)(Fx & ~Gx)  SM

2. (x)Fx  (x)Gx  SM

3. Fa & ~Ga  1, D
4. Fa 3, &D

5. ~Ga 3,&D

6. ~(x)Fx  (x)Gx 2, D

7. (x)~Fx  6, ~D

8. ~Fb 7, D
9. Ga 6, D

10. O X

Using ‘a’ as a

substitution constant

(remembering not to

check off the

universal), we can

close the right

branch, though the

left branch remains

open.

