


 A set of sentences is consistent if and only if 

there is at least one truth value assignment 

[of the constituents of the set of sentences] 

on which all the members of the set are 

true.  

 We now know how to check for consistency 

using a tree, and can recover specific truth-

value assignments on which all members of 

a given set come out true (if the set is 

consistent). 
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 A sentence is a contradiction if and only if 

it is false on every possible truth-value 

assignment of its constituents. 

 

 A sentence , is a contradiction if 
and only if { } is inconsistent. 

 Since inconsistent sets are sets whose 
members can never all be true at 
the same time, and since { } has 
only one member, that member 
must never be true for the set to be 
inconsistent. 



 A sentence  of PL is a contradiction if and 

only if  { } has a closed truth tree (meaning 

{ } is inconsistent). 

 If the tree for { } closes, it means that it is 

impossible for  to be true. 
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 A sentence of PL is a tautology if and only 

if it is true on every possible truth-value 

assignment of its constituents. 

 

 A sentence is a tautology if and only if 

{~ } is truth-functionally inconsistent. 

 Since inconsistent sets are sets whose 

members can never all be true, and since 

{~ } has only one member and is a 

negation, must be always true for ~  to 

be never true. 



 A sentence  is a tautology if and only if  

{~ } has a closed truth tree (meaning {~ } is 

inconsistent). 

 If the tree for {~ } closes, it means that it is 

impossible for ~  to be true, which in turn 

means it is impossible for  to be false. 
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 A sentence is contingent if and only if it is 

neither a tautology nor a contradiction. 

 

 A sentence  is contingent if and only if 

both {~ } and { } are truth-functionally 

consistent. 

 Since  is either a tautology or a 

contradiction if one of the above sets is 

inconsistent,  is contingent if it is neither a 

tautology nor a contradiction. 



 A sentence  is contingent if and only if 

neither {~ } nor { } has a closed truth tree. 

 If the tree for {~ } is open and the tree for 

{ } is open, then it means that  can be 

either true or false. 
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 Sentences  and  are equivalent if and 

only if there is no truth value assignment 

on which  and  have different truth-

values. 

 

 Sentences  and  are equivalent if and 
only if {~(   )} is inconsistent 

 Since only contradictions make sets of 
which they are sole members inconsistent, 
the negation of a sentence asserting that 

 and  have different truth-values being 
contradictory means that  and  must 
have the same truth-value. 



 Sentences  and  are equivalent if and only if {~(  

 )} has a closed truth tree. 

 If  and  are equivalent, then (   ) is a 

tautology because the two sentences always have 

the same truth-value. That would make ~(   ) a 

contradiction. 

 So to check for equivalence of any two sentences 

on a tree, join them with a biconditional, negate 

the biconditional, and check for consistency of the 

set with that negated biconditional as its only 

member. 
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 A set  of sentences entails a sentence  

if and only if there is no truth-value 

assignment on which every member of  

is true and  is false. 

 

 ╞  if and only if   {~ } is inconsistent. 



 A finite set  entails a sentence  if and only 

if the set   {~ } has a closed tree (is 

inconsistent). 

 So to check if some finite set entails some 

sentence, represent each member of the 

set along with the negation of what you’re 

checking to see whether the set entails.   

 If the table closes, then it is impossible for all 

members of the set  to be true while  is 
false. 



 Since validity is simply a special case of 

entailment, the same procedure can 

demonstrate that validity can be 

described in terms of consistency. 

 If an argument is valid, then the union of 

the set of its premises and the negation 

of its conclusion will form an inconsistent 

set. 



 An argument with a finite number of 
premises is valid if and only if the set 
consisting of all and only its premises and 
the negation of the conclusion has a closed 
tree. 

 A tree that closes when you include every 
premise and the negation of the conclusion 
means that the conclusion cannot be false 
while the premises are true. (or else that the 
premises are inconsistent, in which case 
they entail anything) 



 All of the previous things remain true in 

PL. 

 We do, however, need a rule for 

decomposing Universal and Existential 

quantifiers.   

 Those rules are a direct result of the 

semantics of quantified sentences. 



 D is a non-branching rule: 

 

M. ( )  

N. ( / )  M, D  

 

Important: Universally quantified sentences are never 
checked off.  Since every substitution instance of a true 
universally quantified statement is true, an infinite 
number of substitution instances can be decomposed 
into the tree. 

In general, we will extract one substitution instance of a 
universal for every individual constant in the branch. 



 D is a non-branching rule 

 

M. ( )   
N. ( / )  M, D 

 

Important:  must be a constant that is foreign to 
the branch in which the existentially quantified 
sentence is decomposed.  When an existentially 
quantified sentence is true, we are entitled only 
to the truth of a single substitution instance of it, 
and we are not entitled to infer any other 
properties of  while we are at it. 



 We can’t really do anything with negated 
quantifiers, so we just convert them to 
equivalent forms: 
› Since ~(x)~ is equivalent to (x) and ~(x)~ is 

equivalent to (x): 

› We change ‘~( ) ’ to ‘( )~ ’ 

› We change ‘~( ) ’ to ‘( )~ ’ 

› And then we check off the negated quantified 
sentence. 

› These rules are known as ~D and ~D, 
respectively 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

 

 

Here we have the set members. First, we 

will decompose 1. because it doesn’t 

branch. 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

Now we do 3. because it doesn’t branch. 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

6. ~(x)Fx (x)Gx 2, D 

Now we do 2. Next, we convert the 
negated universal.  



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

6. ~(x)Fx (x)Gx 2, D 

7. (x)~Fx   6, ~D 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

6. ~(x)Fx (x)Gx 2, D 

7. (x)~Fx   6, ~D 

Now we must 

eliminate the 

existential 

statement, so that 

we may check it off. 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

6. ~(x)Fx  (x)Gx 2, D 

7. (x)~Fx    6, ~D 

8. ~Fb    7, D 

Remember that the 

constant for an 

existential must be 

foreign to the 

branch! 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 

4. Fa    3, &D 

5. ~Ga    3,&D 

 

6. ~(x)Fx  (x)Gx 2, D 

7. (x)~Fx    6, ~D 

8. ~Fb    7, D 

Now we can see 

that we have an 

open branch, and 

so don’t really have 

to bother with the 

one on the right, but 

lets see what we 

can do with that 

branch: 



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 
4. Fa    3, &D 

5. ~Ga    3,&D 

 
6. ~(x)Fx  (x)Gx 2, D 

7. (x)~Fx    6, ~D 

8. ~Fb    7, D 
9.     Ga  6, D 

10.      

Using ‘a’ as a 

substitution constant 

(remembering not to 

check off the 

universal), we can 

close the right 

branch, though the 

left branch remains 

open.  



1. (x)(Fx & ~Gx)  SM 

2. (x)Fx  (x)Gx  SM 

3. Fa & ~Ga   1, D 
4. Fa    3, &D 

5. ~Ga    3,&D 

 
6. ~(x)Fx  (x)Gx 2, D 

7. (x)~Fx    6, ~D 

8. ~Fb    7, D 
9.     Ga  6, D 

10.   O  X 

Using ‘a’ as a 

substitution constant 

(remembering not to 

check off the 

universal), we can 

close the right 

branch, though the 

left branch remains 

open.  


