Philosophy 220

Trees for PL 2

Old (still applicable) notions concerning branches:

- Closed: A <u>branch</u> is closed for a tree in PL if it contains an atomic sentence AND the negation of that atomic sentence. A <u>tree</u> is closed when all branches of the tree are closed.
- Open: a <u>branch</u> is open if it is not closed, and a <u>tree</u> is open if at least one branch is completed AND open.

New notions:

- Completed: A branch is completed if one of the following is true:
 - It is closed.
 - It is open and every sentence on the branch is one of the following:
 - An atomic sentence
 - The negation of an atomic sentence
 - A decomposed sentence
 - A universal sentence of which the following conditions ALL apply:
 - It has been decomposed at least once
 - It has been decomposed once for every constant on the branch

Infinite Trees

- Unfortunately, in PL we have the possibility of generating trees whose branches cannot satisfy the conditions for completion previously specified.
- For example: (next slide)

An infinite tree

```
(∀x)(∃y)Pxy
(∃y)Pay
1, ∀D
Pab
(∃y)Pby
(∃y)Pby
Pbc
2, ∃D
2, ∃D
2, ∃D
```

 Note that we must keep re-decomposing 1 every time a new constant is added to the branch, and since we must introduce a foreign constant when we do existential decomposition, this process will go on forever and the tree will never be completed because 1 will never be decomposed once for every constant on the branch.

The solution:

- We introduce a new way to decompose existential statements to deal with this called ∃D2:
- When there exists an x with some property, that x could be one of the things already mentioned (a constant on the branch) or it could be another thing (a constant foreign to the branch)
- ■D2 can branch an indefinite number of times. It branches once for every constant on the branch and one additional time to introduce a constant foreign to the branch.

Solution to the infinite tree:

1.	(∀x)(∃y)Pxy			SM
2.	(∃y)Pay	$\sqrt{}$		1, ∀D
3.	Pab			2, 3D
4.	(∃y) <u>P</u> by	$\sqrt{}$		1, ∀D
5.	Pba	Pbb	Pbc	2, ∃D2

Now notice that the 'Pbc' branch is still infinite, but at least the 'Pba' and 'Pbb' branches are completed and open because 1 on those branches is decomposed once for every constant on the tree.

Systematic trees:

- A systematic tree is a tree that is guaranteed to reach a result so long as the system is followed (and so long as such a result is possible).
- Note that a systematic tree is often not the shortest or simplest tree, but it always gets a result (again, whenever such a result is possible).
- A tree is systematic if and only of it follows "The System"

- "The System" (Paraphrased from text p. 491)
- Stop if (because you have a result):
 - The tree closes
 - You get a completed open branch
- Do the tree in the following order:
 - Decompose truth functional sentences and existentially quantified sentences (with $\exists D2$)
 - 2. Decompose universal sentences once, and once for every constant on the branch.
 - Every time a step 1 action is available, do it before doing any available step 2 action.

Limits to the system:

• There are still some infinite trees, but it usually becomes clear which those are. Generally, whenever the only branches that continue are the branches of ∃D2 that introduce foreign constants, there is no finite solution, but alas, there is no way to prove that.