PHILOSOPHY 220

Symbolization in SL 2

Scope

- When we use connectives to join atomic sentences of *SL*, we must be concerned with the **scope** of the connectives we use. Parentheses () and Brackets [] help us to visually organize scope for molecular sentences in *SL*.
- Contrast
 - ~(A & B): It is not the case that both A and B
 - ~A & B: Both A is not the case and B is the case.
- The difference between the above is that the entire molecular sentence 'A & B' is in the scope of the negation, while in the sentence '~A & B', only 'A' is in the scope of the negation.

Logic is not math!!!

- While '~' certainly looks like '-', and while 'negation' and 'negative' sound like they ought to have a great deal to do with one another, resist the temptation to treat the logical negation symbol like the mathematical negative symbol.
- Example:
 - Does -(3 + 5) = -3 + -5?
 - Is ~(A & B) truth-functionally equivalent to ~A & ~B?
- Let's Check:

R	ef.	Fir	st Sent.	Second Sent		Sent.
А	В	~	A & B	~A	&	~B
Т	Т					
Т	F					
F	Т					
F	F					

Re	ef.	Fir	st Sent.	Second Sent		Sent.
А	В	~	A & B	~A	&	~B
Т	Т		Т			
Т	F		F			
F	Т		F			
F	F		F			

R	ef.	Fir	st Sent.	Second Sent.		Sent.
А	В	~	A & B	~A	&	~B
Т	Т	F	Т			
Т	F	Т	F			
F	Т	Т	F			
F	F	Т	F			

Re	ef.	Fir	st Sent.	Second Sent		Sent.
А	В	~	A & B	~A	&	~B
Т	Т	F	Т	F		
Т	F	Т	F	F		
F	Т	Т	F	т		
F	F	Т	F	т		

R	ef.	Fir	st Sent.	Seco	ond S	Sent.
А	В	~	A & B	~A	&	~B
Т	Т	F	Т	F		F
Т	F	Т	F	F		т
F	Т	Т	F	т		F
F	F	Т	F	т		т

R	ef.	Fir	st Sent.	Seco	ond S	Sent.
А	В	~	A & B	~A	&	~B
Т	Т	F	Т	F	F	F
Т	F	Т	F	F	F	Т
F	Т	Т	F	Т	F	F
F	F	Т	F	Т	Т	Т

Re	ef.	Fir	st Sent.	Second S		Sent.
А	В	~	A & B	~A	&	~B
Т	Т	F	Т	F	F	F
Т	F	т	F	F	F	Т
F	Т	Т	F	Т	F	F
F	F	Т	F	Т	т	Т

'~ (A & B)' is not logically equivalent to '~A & ~B' because they do not have the same truth values in the same circumstances.

Truth Functionality Illustrated:

- Consider the molecular sentence :
- (A & B) v [(~B v A) & (~A v B)]
- Now assume A is true and B is false. What is the truth value of the whole sentence?

```
(A & B) v [(~B v A) & (~A v B)]
(T & F) v [(~F v T) & (~T v F)]
F v [(~F v T) & (~T v F)]
F v [(T v T) & (F v F)]
F v [T & (F v F)]
F v [T & (F v F)]
F v [T & F]
F v F
F
```

The Material Conditional

Conditional

Ρ	Q	$P \supset Q$
Т	Т	
Т	F	
F	Т	
F	F	

Ρ	Q	$P \supset Q$
Т	Т	Т
Т	F	
F	Т	
F	F	

Very Straightforward. "If the pitcher throws a fastball, then the batter hits a home run." is true when it is true that the pitcher throws a fastball and true that the batter hits a home run.

Ρ	Q	$P \supset Q$
Т	Т	Т
Т	F	F
F	Т	
F	F	

Also Straightforward. "If the pitcher throws a fastball, then the batter hits a home run." is false when it is true that the pitcher throws a fastball and false that the batter hits a home run.

Ρ	Q	$P \supset Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

A bit counterintuitive: "If the pitcher throws a fastball, then the batter hits a home run." is true whenever it is not false. If the antecedent is false (if the pitcher does not throw a fastball) then the conditional will not be falsified, and will be counted as true.

- Consider whether the following are logically equivalent:
 - "If you clean the barn I'll pay you \$5."
 - "Either you don't clean the barn, or I'll pay you \$5"
- The preceding are symbolized:
 - $C \supset P$
 - ~C v P

Ρ	Q	~P	V	Q
Т	Т	F	т	Т
Т	F	F	F	F
F	Т	Т	т	Т
F	F	Т	Т	F

Ρ	Q	~P	V	Q	$P \supset Q$
Т	Т	F	Т	Т	Т
Т	F	F	F	F	F
F	Т	Т	Т	Т	Т
F	F	Т	Т	F	Т

- Many students want to make a conditional false when the antecedent is false. That would make the symbol '⊃' mean the same thing as the '&'.
- Does 'If P then Q' mean the same thing as 'P and Q'?
- Clearly not. The person who utters the latter is asserting the truth of both P and Q while the person who utters the former is asserting neither the truth nor falsity of either P or Q.
- The material conditional asserts a relationship between P and Q that is false when the antecedent (P) is true while the consequent (Q) is false, and true otherwise.

Material Conditionals in Arguments

- Further, if the material conditional is not defined as it is, then some obviously valid argument forms come out funny (specifically, modus ponens looks like it has a superfluous premise and modus tollens is invalid).
- See me later for a fuller explanation of that point.

- Many uses of "If...Then..." in English are not instances of the material conditional.
- Consider the truth value of: "If there is an Elephant in the room, then it is raining."

- Many uses of "If...Then..." in English are not instances of the material conditional.
- Consider the truth value of: "If there is an Elephant in the room, then it is raining."
 - The above is true (barring an elephant being in the room and clear weather when I present these notes)
 - If you think it must be false, you are reading it as a causal conditional, which is a material conditional with extra baggage. In a causal conditional "If P then Q" means "P causes Q"

- Many uses of "If...Then..." in English are not instances of the material conditional.
- Consider symbolizing: "If the Germans had won the second world war, then everyone would speak German"

- Many uses of "If...Then..." in English are not instances of the material conditional.
- Consider symbolizing: "If the Germans had won the second world war, then everyone would speak German"
 - Notice that there are not *two* propositions expressed because 'the Germans *had* won...' does not express a proposition by itself, nor does 'everyone *would* speak German'.
 - This is a counterfactual, or subjunctive conditional. It is best symbolized 'P'.

The Material Biconditional

Biconditional

Ρ	Q	$\mathbf{P} \equiv \mathbf{Q}$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Material Biconditional and '='

- The biconditional is a sign of logical equivalence and not general equivalence or identity.
- The sentence 'P ⊃ Q' is logically equivalent to the sentence '~P v Q' but is not *the same sentence*.
- So '(P \supset Q) = (~P v Q)' is logically true while

'($P \supset Q$) = (~P v Q)' is false