Predicates 2 》》

Philosophy 220

" Truth-functional connectives: \&, v, ~, \supset, \equiv
> Mean the same things that they always have.
» Lower-case letters (a-z, with and without numerical subscripts) stand for Singular Terms
> Individual Constants (letters a through v, with and w/o subscript)
> Variables (letters w-z, with and w/o subscript)
" Upper-case letters (A-Z with and without numerical subscripts) stand for Predicates
> A predicate by itself indicates how many places it has by the number of primes following it.
$>$ E. g. F^{\prime} is a one-place predicate while $F^{\prime \prime \prime}$ is a three-place predicate

》 A symbolization key contains three elements:
$>$ The Universe of Discourse (UD): the set of things being discussed
> Predicates: with variables in place of Singular Terms
> Singular Terms: Specified by individual constants
》 For example:
> UD: Integers greater than zero and less than six
$>$ Ex: x is even
> Ox: x is odd
$>$ Gxy: x is greater than y
$>$ Lxy: x is less than y
$>$ a: 1
$>$ b: 2
$>$ c: 3
$>\mathrm{d}: 4$
$>$ e: 5
Symbolization Rey:

》 Words like 'all', 'none', 'some', 'everyone', 'nobody', and 'someone' (and many others) are known as 'quantity words' because they express something about a quantity. Consider the sentence 'Every integer is either odd or even'.
" We can interpret this sentence using the symbolization key on the previous slide as:
$\geqslant(E a \vee O a) \&(E b \vee O b) \&(E c \vee O c) \&(E d \vee O d) \&(E e v$ Oe)
" Note here that we are taking the scope of quantity terms to be only within the Universe of Discourse.
@uantity Ternาs
b. Bct
d. Bds
f. (~Bak \& ~Bbk) \& [(Bck \& ~Bdk) \& ~Bek]
h. ~Atp \& ~Ath
j. Lbp $\supset L d p$
I. (Tbc \& Tca) \& (\sim Tbe \& \sim Tce)
n. (Tba $\vee T c a) \vee(T d a \vee T e a)$
p. Tcb \supset Tca

Exercise 7.2_{0} 2s

