Philosophy 220

Truth-Functional Equivalence and Consistency

Review

- Equivalency: The members of a pair of sentences are logically equivalent if and only if it is not (logically) possible for one of the sentences to be true while the other sentence is false.
- Consistency: A set of sentences is logically consistent if and only if it is (logically) possible for all the members of that set to be true at the same time.

Equivalence (Formally):

- Sentences **P** and **Q** of SL are truth-functionally equivalent if and only if there is no truth value assignment [for the components of **P** and **Q**] on which **P** and **Q** have different truth-values.
- This means that on a full truth table, the columns for any two truth-functionally equivalent sentences of SL will be identical.

Finding Equivalence on a shortened truth-table

- As with tautology and contradiction, we test for equivalence by looking for a counterexample.
- If we assume that one of the sentences is true and the other false, then either we will or will not get a coherent truth-value assignment. If we do, then the two sentences are shown not to be equivalent. If we cannot get a coherent truth-value assignment assuming that one sentence is true while the other is false, then we must try it the other way before drawing any conclusions. (why?)

 \sim (B & \sim A) and (A v B)

A	В	~	(B &	~A)	A v B

Which columns should be identical if these two sentences are equivalent?

 \sim (B & \sim A) and (A v B)

A	В	~	(B &	~A)	AvB

Which columns should be identical if these two sentences are truth-functionally equivalent?

$$\sim$$
 (B & \sim A) and (A v B)

A	В	~	(B &	~A)	AvB
		Т			F

So assume that one is T and the other F.

 \sim (B & \sim A) and (A v B)

A	В	٧	(B &	~A)	AvB
		Т			F

Note that the only way for A v B to be false is for both A and B to be false.

 \sim (B & \sim A) and (A v B)

A	В	٧	(B &	~A)	AvB
F	F	Т			F

Note that the only way for A v B to be false is for both A and B to be false.

$$\sim$$
 (B & \sim A) and (A v B)

A	В	~	(B &	~A)	AvB
F	F	Т		T	F

Now we see if this truth-assignment is coherent...

 \sim (B & \sim A) and (A v B)

A	В	٧	(B &	~A)	AvB
F	F	Т	F	Т	F

It is coherent. If A and B are both false, then \sim (B & \sim A) must be true.

F	Н	J	F &	(J v H)	(F & J)	v H

Which columns should be identical if these two sentences are truth-functionally equivalent?

F	Н	J	F &	(J v H)	(F & J)	vН

Which columns should be identical if these two sentences are truth-functionally equivalent?

F	Н	J	F &	(J v H)	(F & J)	vН
			Т			F

Assume one is T and the other F...

F	Н	J	F &	(J v H)	(F & J)	vН
	F		Т		F	F

If the disjunction '(F & J) v H' is false, then both disjuncts must be false.

F	Н	J	F &	(J v H)	(F & J)	vН
T	F		Т	Т	F	F

If the conjunction 'F & (J v H)' is true then both of its conjuncts must be true.

F	Н	J	F &	(J v H)	(F & J)	vН
T	F	?	Т	Т	F	F

Is there a truth-value assignment for J that is coherent?

F	Н	J	F &	(J v H)	(F & J)	vН	E
T	F	Т	Т	Т		F	Γ

FAIL!

Is there a truth-value assignment for J that is coherent?

T is not coherent because it would make (F & J) true, which would in turn make ((F & J) v H) true.

F	Н	J	F &	(JvH)	(F & J)	vН
T	F	F	Т	(Z)	F	F

FAIL!

Is there a truth-value assignment for J that is coherent?

F is not coherent because it would make (J v H) false, which would in turn make (F & (J v H)) false.

F	Н	J	F &	(J v H)	(F & J)	vН
T	F	X	Т	Т	F	F

FAIL!

Does this mean that F & (J v H) and (F & J) v H are equivalent?

F	Н	J	F &	(J v H)	(F & J)	vΗ
T	F	X	Т	Т	F	F

FAIL!

Does this mean that F & (J v H) and (F & J) v H are equivalent?

IT DOES NOT!

We have shown that F & (J v H) cannot be true while (F & J) v H is false, but it is still possible that F & (J v H) can be false while (F & J) v H is true.

So let's check:

F	Н	J	F &	(J v H)	(F & J)	vН
			F			Т

So assume one is F and the other T (the opposite of what we began with)...

F	Н	J	F &	(J v H)	(F & J)	vН
F	T		F			Т

We have many ways to proceed here, so let us assume that F is false (to make the conjunction it is in false) and that H is true (to make the disjunction that it is in true). If this turns out to be incoherent, there are several other possibilities to try.

F	Н	J	F &	(J v H)	(F & J)	vН
F	Т	?	F			Т

Now we must see if any truth value of J would yield a coherent table...

F	Н	J	F &	(J v H)	(F & J)	vН
F	T	T	F			T

Let's try T first.

F	Н	J	F &	(J v H)	(F & J)	vΗ
F	T	Т	F			T

'J v H' comes out true on this set of assignments while 'F & J' comes out false.

F	Н	J	F &	(J v H)	(F & J)	vН
F	T	Т	F	Т	F	Т

This is a coherent truth-value assignment for F, H, and J that reveals that these two sentences are not truth-functionally equivalent.

The Full Truth-Table (for illustration)

F	Н	J	F &	(J v H)	(F & J)	vН
Т	Т	Т	Т	Т	Т	Т
Т	T	F	Т	Т	F	Т
T	F	Т	Т	Т	Т	Т
T	F	F	F	F	F	F
F	Т	Т	F	Т	F	Т
F	T	F	F	Т	F	Т
F	F	Т	F	T	F	F
F	F	F	F	F	F	F

We proved with our first shortened truth-table that the first sentence is never true while the second sentence is false...

The Full Truth-Table (for illustration)

F	Н	J	F &	(J v H)	(F & J)	vН
T	T	Т	Т	T	T	Т
T	T	F	Т	Т	F	Т
T	F	Т	Т	Т	Т	Т
T	F	F	F	F	F	F
F	Т	Т	F	Т	F	Т
F	T	F	F	T	F	Т
F	F	Т	F	T	F	F
F	F	F	F	F	F	F

...however, we showed with the second shortened truth-table that the two are not equivalent because the second sentence can be true while the first sentence is false.

Consistency

- A set of sentences of SL is consistent if and only if there is at least one truth value assignment [of the constituents of the set of sentences] on which all the members of the set are true.
- That means that if each of the set of sentences of SL were done on a truth-table, there would be one *row* of the truth table on which all of the sentences of the set are true.

Shortened tables

- Since a single example of a case in which all of the sentences of a set can be true shows that the set is consistent, when we check for consistency with a shortened truth-table, we should assume that all of the sentences of the set are true. If we get a coherent truth-value assignment from this assumption, then the set is consistent. If we cannot, then the set is inconsistent.
- Checking for counterexample, as we do with tautology, contradiction, and contingency would be going about it the long way.

Н	J	K	$H\supset J$	$J\supset K$	$K\supset$	~H

Н	J	K	$H\supset J$	$\mathrm{J}\supset\mathrm{K}$	K⊃	~H
			Т	T	Т	

Assume that each is true.

Н	J	K	$\mathrm{H}\supset\mathrm{J}$	$J\supset K$	K⊃	~H
T			Т	Т	Т	

 $H \supset J$ being true is consistent with several outcomes, so let's assume that H is true to start with.

Н	J	K	$H\supset J$	$J\supset K$	K ⊃	~H
T	Т		Т	Т	Т	

If H is true, then J must be true to preserve the truth of $H \supset J$.

Н	J	K	$H\supset J$	$J\supset K$	K ⊃	~H
T	Т	Т	Т	Т	Т	

If J is true, then K must be true to preserve the truth of $J \supset K$.

Н	J	K	$H\supset J$	$J\supset K$	K ⊃	~H
Т	Т	Т	Т	Т	T	T

If K is true, then \sim H must be true to preserve the truth of K $\supset \sim$ H.

Н	J	K	$H\supset J$	$J\supset K$	K ⊃	~H	EVIII
(F)	T	Т	Т	Т	Т	(A)	L'AIL:

Failure, H and ~H cannot both be true at the same time.

Н	J	K	$\mathrm{H}\supset\mathrm{J}$	$\mathrm{J}\supset\mathrm{K}$	$K\supset$	~H
F			T	T	T	

Let's try this again...

Assume that each member of the set is true.

Then, since assuming H was true brought us an inconsistent set, let's assume H is false instead.

Н	J	K	$H\supset J$	$\mathrm{J}\supset\mathrm{K}$	K⊃	~H
F			Т	Т	Т	Т

If H is false, then ~H is true.

Н	J	K	$H\supset J$	$J\supset K$	K ⊃	~H
F	F	F	Т	Т	Т	Т

The truth-value of $H \supset J$ is assured by H having a truth-value of false, whatever J's truth-value.

Also, the truth of $K \supset \sim H$ is assured by $\sim H$ being true, whatever K's truth-value.

So we can select any truth values for J and K so long as they don't make $J \supset K$ false. (F for both will do)

Н	J	K	$H\supset J$	$\mathrm{J}\supset\mathrm{K}$	K ⊃	~H
F	F	F	Т	Т	T	Т

This is one of several examples of truth-value assignments on which all three sentences end up true, so we have proven that the above set of sentences is consistent.