Philosophy 220

Derivations 3

Derivability

- A sentence P of SL is derivable in SD from a set Γ of sentences of SL if and only if there is a derivation in SD in which all the primary assumptions are members of Γ and P occurs within the scope of only the primary assumptions.
- Note that if and only if **P** is derivable from Γ , then $\Gamma \models \mathbf{P}$

Validity

• If the conclusion of an argument is derivable in SD from all and only its premises, then the argument is valid.

Theorems

- A sentence P of SL is a theorem in SD if and only if P is derivable in SD from the empty set, Ø.
- Since all and only tautologies are entailed by the empty set, all and only tautologies are theorems in SD.

Equivalence

 The sentences P and Q of SL are equivalent in SD if and only if P = Q is a theorem in SD.

Inconsistency

- A set Γ of sentences of SL is inconsistent in SD if and only if a contradiction is derivable from Γ.
- A set of sentences of SL is consistent when it is not inconsistent.

Sample Proof of Equivalence:

- The front flap of the book indicates that 'Q \supset P' is equivalent to '~P \supset ~Q'.
- This is known as Contraposition.
- If they really are equivalent, then the sentence 'Q ⊃ P ≡ ~P ⊃ ~Q' should be a theorem in SD.

Derive $Q \supset P \equiv \sim P \supset \sim Q$

1a	1.	$Q \supset P$
21a	2.	~P
321a	3.	Q
321a	4.	Р
321a	5.	P & ~P
!21a	6.	~Q
!1a	7.	$\sim P \supset \sim Q$
1b	8.	$\sim P \supset \sim Q$
41b	9.	Q
541b	10.	~P
541b	11.	~Q
541b	12.	~Q & Q
!41b	13.	Р
!1b	14.	$Q \supset P$
I	15	$Q \supset P \equiv \sim P \supset \sim Q$

Ala / = I (~P \supset ~Q) A2 / ⊃I (~Q) A3 / ~I (~Q) 1,3 ⊃E 2,4 &I (contra) 3-5~1 2-6 ⊃l A1b / = $(Q \supset P)$ A4 / ⊃I (P) A5 / ~I (P) 8,10 ⊃E 9,11 &I (contra) 10-12~1 9-13 ⊃l 1-7,8-14 **≡**