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CHAPTER SIX

Section 6.1E

1.a. We shall prove that every sentence of SL that contains only binary
connectives, if any, is true on every truth-value assignment on which all its
atomic components are true. Hence every sentence of SL that contains only
binary connectives is true on at least one truth-value assignment, and thus no
such sentence can be truth-functionally false. We proceed by mathematical
induction on the number of occurrences of connectives in such sentences.
(Note that we need not consider all sentences of SL in our induction but only
those with which the thesis is concerned.)
Basis clause: Every sentence with zero occurrences of a binary connective (and
no occurrences of unary connectives) is true on every truth-value assignment
on which all its atomic components are true.
Inductive step: If every sentence with k or fewer occurrences of binary connec-
tives (and no occurrences of unary connectives) is true on every truth-value
assignment on which all its atomic components are true, then every sentence
with k � 1 occurrences of binary connectives (and no occurrences of unary
connectives) is true on every truth-value assignment on which all its atomic
components are true.

The proof of the basis clause is straightforward. A sentence with zero
occurrences of a connective is an atomic sentence, and each atomic sentence
is true on every truth-value assignment on which its atomic component (which
is the sentence itself) is true.

The inductive step is also straightforward. Assume that the thesis holds
for every sentence of SL with k or fewer occurrences of binary connectives and
no unary connectives. Any sentence P with k � 1 occurrences of binary con-
nectives and no unary connectives must be of one of the four forms Q & R,
Q ∨ R, Q ⊃ R, and Q � R. In each case Q and R contain k or fewer occur-
rences of binary connectives, so the inductive hypothesis holds for both Q and
R. That is, both Q and R are true on every truth-value assignment on which
all their atomic components are true. Since P’s immediate components are Q
and R, its atomic components are just those of Q and R. But conjunctions,
disjunctions, conditionals, and biconditionals are true when both their imme-
diate components are true. So P is also true on every truth-value assignment
on which its atomic components are true, for both its immediate components
are then true. This completes our proof. (Note that in this clause we ignored
sentences of the form ∼ Q, for the thesis concerns only those sentences of SL
that contain no occurrences of ‘∼’.)

b. Every sentence P that contains no binary connectives either con-
tains no connectives or contains at least one occurrence of ‘∼’. We prove the
thesis by mathematical induction on the number of occurrences of ‘∼’ in such
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SOLUTIONS TO SELECTED EXERCISES ON P. 238 135

sentences. The first case consists of the atomic sentences of SL since these con-
tain zero occurrences of connectives.
Basis clause: Every atomic sentence is truth-functionally indeterminate.
Inductive step: If every sentence with k or fewer occurrences of ‘∼’ (and no
binary connectives) is truth-functionally indeterminate, then every sentence
with k � 1 occurrences of ‘∼’ (and no binary connectives) is truth-functionally
indeterminate.

The basis clause is obvious.
The inductive step is also obvious. Suppose P contains k � 1 occur-

rences of ‘∼’ and no binary connectives and that the thesis holds for every sen-
tence with fewer than k � 1 occurrences of ‘∼’ and no binary connectives. P
is a sentence of the form ∼ Q, where Q contains k occurrences of ‘∼’; hence,
by the inductive hypothesis, Q is truth-functionally indeterminate. The nega-
tion of a truth-functionally indeterminate sentence is also truth-functionally
indeterminate. Hence ∼ Q, that is, P, is truth-functionally indeterminate. This
completes the induction.

c. The induction is on the number of occurrences of connectives in
P. The thesis to be proved is

If two truth-value assignments A� and A� assign the same truth-values
to the atomic components of a sentence P, then P has the same truth-
value on A� and A�.

Basis clause: The thesis holds for every sentence with zero occurrences of con-
nectives.
Inductive step: If the thesis holds for every sentence with k or fewer occurrences
of connectives, then the thesis holds for every sentence with k � 1 occurrences
of connectives.

The basis clause is obvious. If P contains zero occurrences of connec-
tives, then P is an atomic sentence and its own only atomic component. P must
have the same truth-value on A� and A� because ex hypothesi it is assigned the
same truth-value on each assignment.

To prove the inductive step, we let P be a sentence with k � 1 occur-
rences of connectives and assume that the thesis holds for every sentence
containing k or fewer occurrences of connectives. Then P is of the form ∼ Q,
Q & R, Q ∨ R, Q ⊃ R, or Q � R. In each case the immediate component(s)
of P contain k or fewer occurrences of connectives and hence fall under the
inductive hypothesis. So each immediate component of P has the same truth-
value on A� and A�. P therefore has the same truth-value on A� and A�, as
determined by the characteristic truth-tables.

d. We prove the thesis by mathematical induction on the number of
conjuncts in an iterated conjunction of sentences P1, . . . , Pn of SL.
Basis clause: Every iterated conjunction of just one sentence of SL is true on a
truth-value assignment if and only if that one sentence is true on that assignment.
Inductive step: If every iterated conjunction of k or fewer sentences of SL is true
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136 SOLUTIONS TO SELECTED EXERCISES ON P. 238

on a truth-value assignment if and only if each of those conjuncts is true on
that assignment, then every iterated conjunction of k � 1 sentences of SL is
true on a truth-value assignment if and only if each of those conjuncts is true
on that assignment.

The basis clause is trivial.
To prove the inductive step, we assume that the thesis holds for iter-

ated conjunctions of k or fewer sentences of SL. Let P be an iterated conjunc-
tion of k � 1 sentences. Then P is Q & R, where Q is an iterated conjunction
of k sentences. P is therefore an iterated conjunction of all the sentences of
which Q is an iterated conjunction, and R. By the inductive hypothesis, the the-
sis holds of Q; that is, Q is true on a truth-value assignment if and only if the
sentences of which Q is an iterated conjunction are true on that assignment.
Hence, whenever all the sentences of which P is an iterated conjunction are
true, both Q and R are true, and thus P is true as well. Whenever at least one
of those sentences is false, either Q is false or R is false, making P false as well.
Hence P is true on a truth-value assignment if and only if all the sentences of
which it is an iterated conjunction are true on that assignment.

e. We proceed by mathematical induction on the number of occur-
rences of connectives in P. The argument is

The thesis holds for every atomic sentence P.

If the thesis holds for every sentence P with k or fewer
occurrences of connectives, then it holds for every sentence P
with k � 1 occurrences of connectives.

The thesis holds for every sentence P of SL.

The proof of the basis clause is fairly simple. If P is an atomic sentence and
Q is a sentential component of P, then Q must be identical with P (since each
atomic sentence is its own only atomic component). For any sentence Q1, then,
[P](Q1//Q) is simply the sentence Q1. Here it is trivial that if Q and Q1 are
truth-functionally equivalent, so are P (which is just Q) and [P](Q1//Q)
(which is just Q1).

In proving the inductive step, the following result will be useful: 
6.1.1. If Q and Q1 are truth-functionally equivalent and R and R1

are truth-functionally equivalent, then each of the following pairs
are pairs of truth-functionally equivalent sentences:

∼ Q ∼ Q1

Q & R Q1 & R1

Q ∨ R Q1 ∨ R1

Q ⊃ R Q1 ⊃ R1

Q � R Q1 � R1
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Proof: The truth-value of a molecular sentence is wholly determined
by the truth-values of its immediate components. Hence, if there is
a truth-value assignment on which some sentence in the left-hand
column has a truth-value different from that of its partner in the
right-hand column, then on that assignment either Q and Q1 have
different truth-values or R and R1 have different truth-values. But this
is impossible because ex hypothesi Q and Q1 are truth-functionally
equivalent and R and R1 are truth-functionally equivalent.

To prove the inductive step of the thesis, we assume the inductive
hypothesis: that the thesis holds for every sentence with k or fewer occur-
rences of connectives. Let P be a sentence of SL with k � 1 occurrences of
connectives, let Q be a sentential component of P, let Q1 be a sentence that
is truth-functionally equivalent to Q, and let [P](Q1//Q) be a sentence that
results from replacing one or more occurrences of Q in P with Q1. Suppose,
first, that Q is identical with P. Then, by the reasoning in the proof of the
basis clause, it follows trivially that P and [P](Q1//Q) are truth-functionally
equivalent. Now suppose that Q is a sentential component of P that is not
identical with P (in which case we say that Q is a proper sentential component
of P). Either P is of the form ∼ R or P has a binary connective as its main
connective and is of one of the four forms R & S, R ∨ S, R ⊃ S, and R � S.
We shall consider the two cases separately.

i. P is of the form ∼ R. Since Q is a proper sentential component of
P, Q must be a sentential component of R. Hence [P](Q1//Q) is a sentence
∼ [R](Q1//Q). But R has k occurrences of connectives, so by the inductive
hypothesis, R is truth-functionally equivalent to [R](Q1//Q). It follows from
6.1.1 that ∼ R is truth-functionally equivalent to ∼ [R](Q1//Q); that is, P is
truth-functionally equivalent to [P](Q1//Q).

ii. P is of the form R & S, R ∨ S, R ⊃ S, or R � S. Since Q is a proper
component of P, [P](Q1//Q) must be P with its left immediate component
replaced by a sentence [R](Q1//Q), P with its right immediate component
replaced with a sentence [S](Q1//Q), or P with both replacements made.
Both R and S have fewer than k � 1 occurrences of connectives, and so the
inductive hypothesis holds for both R and S. Hence R is truth-functionally
equivalent to [R](Q1//Q), and S is truth-functionally equivalent to [S]
(Q1//Q). And R is truth-functionally equivalent to R and S is truth-function-
ally equivalent to S. Whatever replacements are made in P, it follows by 6.1.1
that P is truth-functionally equivalent to [P](Q1//Q).

This completes the proof of the inductive step and thus the proof of our thesis.

2. An example of a sentence that contains only binary connectives and
is truth-functionally true is ‘A ⊃ A’. An attempted proof would break down in
the proof of the inductive step (since no atomic sentence is truth-functionally
true, the basis clause will go through).
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138 SOLUTIONS TO SELECTED EXERCISES ON PP. 246–247

Section 6.2E

1. Suppose that we have constructed, in accordance with the algo-
rithm, a sentence for a row of a truth-function schema that defines a truth-
function of n arguments. We proved in Exercise 1.d in Section 6.1E the result
that an iterated conjunction (. . . (P1 & P2) & . . . & Pn) is true on a truth-
value assignment if and only if P1, . . . , Pn are all true on that truth-value
assignment. We have constructed the present iterated conjunction of atomic
sentences and negations of atomic sentences in such a way that each conjunct
is true when the atomic components have the truth-values represented in that
row. Hence for that assignment the sentence constructed is true. For any other
assignments to the atomic components of the sentence, at least one of the con-
juncts is false; hence the conjunction is also false.

2.a. (A & ∼ B) ∨ (∼ A & ∼ B)
b. A & ∼ A
d. ([(A & B) & C] ∨ [(A & B) & ∼ C]) ∨ [(∼ A & ∼ B) & C]

3. Suppose that the table defines a truth-function of n arguments. We
first construct an iterated disjunction of n disjuncts such that the ith disjunct
is the negation of the ith atomic sentence of SL if the ith truth-value in the
row is T, and the ith disjunct is the ith atomic sentence of SL if the ith truth-
value in the row is F. Note that this iterated disjunction is false exactly when
its atomic components have the truth-values displayed in that row. We then
negate the iterated disjunction, to obtain a sentence that is true for those truth-
values and false for all other truth-values that may be assigned to its atomic
components.

4. To prove that {‘∼’, ‘&’} is truth-functionally complete, it will suffice
to show that for each sentence of SL containing only ‘∼’, ‘∨’, and ‘&’, there is
a truth-functionally equivalent sentence of SL that contains the same atomic
components and in which the only connectives are ‘∼’ and ‘&’. For it will then
follow, from the fact that {‘∼’, ‘∨’, ‘&’} is truth-functionally complete, that
{‘∼’, ‘&’} is also truth-functionally complete. But every sentence of the form

P ∨ Q

is truth-functionally equivalent to

∼ (∼ P & ∼ Q)

So by repeated substitutions, we can obtain, from sentences containing ‘∼’, ‘∨’,
and ‘&’, truth-functionally equivalent sentences that contain only ‘∼’ and ‘&’.

To show that {‘∼’, ‘⊃’} is truth-functionally complete, it suffices to point
out that every sentence of the form

P & Q
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SOLUTIONS TO SELECTED EXERCISES ON P. 247 139

is truth-functionally equivalent to the corresponding sentence

∼ (P ⊃ ∼ Q)

and that every sentence of the form

P ∨ Q

is truth-functionally equivalent to the corresponding sentence

∼ P ⊃ Q

For then we can find, for each sentence containing only ‘∼’, ‘∨’, and ‘&’, a
truth-functionally equivalent sentence with the same atomic components con-
taining only ‘∼’ and ‘⊃’. It follows that {‘∼’, ‘⊃’} is truth-functionally complete,
since {‘∼’, ‘∨’, ‘&’} is.

5. To show this, we need only note that the negation and disjunction
truth-functions can be expressed using only the dagger. The truth-table for
‘A ↓ A’ is

A A ↓ A

T T F T
F F T F

The sentence ‘A ↓ A’ expresses the negation truth-function, for the column
under the dagger is identical with the column to the right of the vertical line
in the characteristic truth-table for negation.

The disjunction truth-function is expressed by ‘(A ↓ B) ↓ (A ↓ B)’, as
the following truth-table shows:

A B (A ↓ B) ↓ (A ↓ B)

T T T F T T T F T
T F T F F T T F F
F T F F T T F F T
F F F T F F F T F

This table shows that ‘(A ↓ B) ↓ (A ↓ B)’ is true on every truth-value assign-
ment on which at least one of ‘A’ and ‘B’ is true. Hence that sentence
expresses the disjunction truth-function.

Thus any truth-function that is expressed by a sentence of SL con-
taining only the connectives ‘∼’ and ‘∨’ can be expressed by a sentence con-
taining only ‘↓’ as a connective. To form such a sentence, we convert the
sentence of SL containing just ‘∼’ and ‘∨’ that expresses the truth-function in
question as follows. Repeatedly replace components of the form ∼ P with P ↓ P
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140 SOLUTIONS TO SELECTED EXERCISES ON PP. 247–248

and components of the form P ∨ Q with (P ↓ Q) ↓ (P ↓ Q) until a sentence
containing ‘↓’ as the only connective is obtained. Since {‘∨’, ‘∼’} is truth-
functionally complete, so is {‘↓’}.

7. The set {‘∼’} is not truth-functionally complete because every sentence
containing only ‘∼’ is truth-functionally indeterminate. Hence truth-functions
expressed in SL by truth-functionally true sentences and truth-functions
expressed in SL truth-functionally false sentences cannot be expressed by a
sentence that contains only ‘∼’.

The set {‘&’, ‘∨’, ‘⊃’, ‘�’} is not truth-functionally complete because
no sentence that contains only binary connectives (if any) is truth-functionally
false. Hence no truth-function that is expressed in SL by a truth-functionally
false sentence can be expressed by a sentence containing only binary con-
nectives of SL.

8. We shall prove by mathematical induction that in the truth-table
for a sentence P containing only the connectives ‘∼’ and ‘�’ and two atomic
components, the column under the main connective of P has an even num-
ber of Ts and an even number of Fs. For then we shall know that no sentence
containing only those connectives can express, for example, the truth-function
defined as follows (the material conditional truth-function):

T T T
T F F
F T T
F F T

In the induction remember that any sentence of SL that contains two atomic
components has a four-row truth-table. Our induction will proceed on the
number of occurrences of connectives in P. However, the first case, that con-
sidered in the basis clause, is the case where P contains one occurrence of a
connective. This is because every sentence that contains zero occurrences of
connectives is an atomic sentence and thus cannot contain more than one
atomic component.
Basis clause: The thesis holds for every sentence of SL with exactly two atomic
components and one occurrence of (one of) the connectives ‘∼’ and ‘�’.

In this case P cannot be of the form ∼ Q, for if the initial ‘∼’ is the
only connective in P, then Q is atomic, and hence P does not contain two
atomic components. So P is of the form Q � R, where Q and R are atomic
sentences. Q � R will have to be true on assignments that assign the same
truth-values to Q and R and false on other assignments. Hence the thesis holds
in this case.
Inductive step: If the thesis holds for every sentence of SL that contains k or
fewer occurrences of the connectives ‘∼’ and ‘�’ (and no other connectives)
and two atomic components, then the thesis holds for every sentence of SL
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that contains two atomic components and k � 1 occurrences of the connec-
tives ‘∼’ and ‘�’ (and no other connectives).

Let P be a sentence of SL that contains exactly two atomic compo-
nents and k � 1 occurrences of the connectives ‘∼’ and ‘�’ (and no other
connectives). There are two cases to consider.

i. P is of the form ∼ Q. Then Q falls under the inductive hypothesis;
hence in the truth-table for Q the column under the main connective con-
tains an even number of Ts and an even number of  Fs. The column for the
sentence ∼ Q simply reverses the Ts and Fs, so it also contains an even num-
ber of Ts and an even number of Fs.

ii. P is of the form Q � R. Then Q and R each contain fewer occur-
rences of connectives. If, in addition, Q and R each contain both of the atomic
components of P, then they fall under the inductive hypothesis—Q has an
even number of Ts and an even number of Fs in its truth-table column, and
so does R. On the other hand, if Q or R (or both) only contains one of the
atomic components of P (e.g., if P is ‘∼ A � (B � A)’ then Q is ‘∼ A’), then
Q or R (or both) fails to fall under the inductive hypothesis. However, in this
case the component in question also has an even number of Ts and an even
number of Fs in its column in the truth-table for P. This is because (a) two
rows assign T to the single atomic component of Q and, by the result in Exer-
cise 1.c, Q has the same truth-value in these two rows; and (b) two rows assign
F to the single atomic component of Q and so, by the same result, Q has the
same truth-value in these two rows.

We will now show that if Q and R each have an even number of Ts
and an even number of Fs in their truth-table columns, then so must P. Let
us assume the contrary, that is, we shall suppose that P has an odd number of
Ts and an odd number of Fs in its truth-table column. There are then two
possibilities.

a. There are 3 Ts and 1 F in P’s truth-table column. Then in three
rows of their truth-table columns, Q and R have the same truth-value, and in
one row they have different truth-values. So either Q has one more T in its
truth-table column than does R, or vice-versa. Either way, since the sum of an
even number plus 1 is odd, it follows that either Q has an odd number of Ts
in its truth-table column or R has an odd number of Ts in its truth-table col-
umn. This contradicts our inductive hypothesis, so we conclude that P cannot
have 3 Ts and 1 F in its truth-table column.

b. There are 3 Fs and 1 T in P’s truth-table column. By reasoning sim-
ilar to that just given, it is easily shown that this is impossible, given the induc-
tive hypothesis.

Therefore P must have an even number of Ts and Fs in its truth-table column.
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9. First, a binary connective whose unit set is truth-functionally com-
plete must be such that a sentence of which it is the main connective is false
whenever all its immediate components are true. Otherwise, every sentence
containing only that connective would be true whenever its atomic compo-
nents were. And then, for example, the negation truth-function would not be
expressible using that connective. Similar reasoning shows that the main col-
umn of the characteristic truth-table must contain T in the last row. Otherwise,
no sentence containing that connective could be truth-functionally true.

Second, the column in the characteristic truth-table must contain an
odd number of Ts and an odd number of Fs. For otherwise, as the induction
in Exercise 8 shows, any sentence containing two atomic components and only
this connective would have an even number of Ts and an even number of Fs
in its truth-table column. The disjunction truth-function, for example, would
then not be expressible.

Combining these two results, it is easily verified that there are only two
possible characteristic truth-tables for a binary connective whose unit set is
truth-functionally complete—that for ‘↓’ and that for ‘⏐’.

Section 6.3E

1.a. {A ⊃ B, C ⊃ D}, {A ⊃ B}, {C ⊃ D}, ∅
b. {C ∨ ∼ D, ∼ D ∨ C, C ∨ C}, {C ∨ ∼ D, ∼ D ∨ C}, {C ∨ ∼ D, C ∨ C},

{∼ D ∨ C, C ∨ C}, {C ∨ ∼ D}, {∼ D ∨ C}, {C ∨ C}, ∅
c. {(B & A) � K}, ∅
d. ∅

2.a, b, d, e.

4.a. To prove that SD* is sound, it suffices to add a clause for the new
rule to the induction in the proof of Metatheorem 6.3.1.

13. If Qk�1 at position k � 1 is justified by ∼ �I, then Qk�1 is a negated
biconditional.

h P
j ∼ Q

k � 1 ∼ (P � Q) h, j ∼ �I

By the inductive hypothesis, �h P and �j ∼ Q. Since P and ∼ Q are acces-
sible at position k � 1, every member of �h is a member of �k�1, and every
member of �j is a member of �k�1. Hence, by 6.3.2, �k�1 P and �k�1 ∼ Q.
But ∼ (P � Q) is true whenever P and ∼ Q are both true. So �k�1 ∼ (P � Q)
as well.

c. To show that SD* is not sound, it suffices to give an example of a
derivation in SD* of a sentence P from a set � of sentences such that P is not
truth-functionally entailed by �. That is, we show that for some � and P, 

|=
|=|=

|=|=
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� P in SD*, but � P. Here is an example:

1 A Assumption
2 A ∨ B Assumption

3 B 1, 2 C∨E

It is easily verified that {A, A ∨ B} does not truth-functionally entail ‘B’.

e. Yes. In proving Metatheorem 6.3.1, we showed that each rule of SD
is truth-preserving. It follows that if every rule of SD* is a rule of SD, then every
rule of SD* is truth-preserving. Of course, as we saw in Exercise 4.c, adding a
rule produces a system that is not sound if the rule is not truth-preserving.

5. No. In SD we can derive Q from a sentence P & Q by &E. But, if
‘&’ had the suggested truth-table, then {P & Q} would not truth-functionally
entail Q, for (by the second row of the table) P & Q would be true when P
is true and Q is false. Hence it would be the case that {P & Q} Q in SD but
not the case that {P & Q} Q.

6. To prove that SD� is sound for sentential logic, we must show that
the rules of SD� that are not rules of SD are truth-preserving. (By Metatheo-
rem 6.3.1, the rules of SD have been shown to be truth-preserving.) The three
additional rules of inference in SD� are Modus Tollens, Hypothetical Syllo-
gism, and Disjunctive Syllogism. We introduced each of these rules in Chap-
ter 5 as a derived rule. For example, we showed that Modus Tollens is elim-
inable, that anything that can be derived using this rule can be derived without
it, using just the smaller set of rules in SD. It follows that each of these three
rules is truth-preserving. For if use of one of these rules can lead from true
sentences to false ones, then we can construct a derivation in SD (without
using the derived rule) in which the sentence derived is not truth-functionally
entailed by the set consisting of the undischarged assumptions. But Metathe-
orem 6.3.1 shows that this is impossible. Hence each of the derived rules is
truth-preserving.

All that remains to be shown, in proving that SD� is sound, is that the
rules of replacement are also truth-preserving. We can incorporate this as a
thirteenth case in the proof of the inductive step for Metatheorem 6.3.1:

13. If Qk�1 at position k � 1 is justified by a rule of replacement, then
Qk�1 is derived as follows:

h P
k � 1 [P](Q1//Q) h RR

where RR is some rule of replacement, sentence P at position h is accessible at
position k � 1, and [P](Q1//Q) is a sentence that is the result of replacing a
component Q of P with a component Q1 in accordance with one of the rules
of replacement. That the sentence Q is truth-functionally equivalent to Q1, no

|=
�

|=/�
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matter what the rule of replacement is, is easily verified. So, by Exercise 1.e in
Section 6.1E, [P](Q1//Q) is truth-functionally equivalent to P. By the induc-
tive hypothesis, �k P; and since P at h is accessible at position k � 1, it fol-
lows that �k�1 P. But [P](Q1//Q) is true whenever P is true (since they are
truth-functionally equivalent), so �k�1 [P](Q1//Q); that is, �k�1 Qk�1.

Section 6.4E

1. Proof of 6.4.4 Assume that � P in SD. Then there is a derivation
in SD of the following sort

1 P1

. .
n Pn

. .
m P

(where P1, P2, . . . , Pn are members of �). To show that � ∪ {∼ P} is incon-
sistent in SD, we need only produce a derivation of some sentence Q and 
∼ Q from members of � ∪ {∼ P}. This is easy. Start with the derivation of P
from � and add ∼ P as a new primary assumption at line n � 1, renumbering
subsequent lines as is appropriate. As a new last line, enter ∼ P by Reiteration.
The result is a derivation of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m � 1 P
m � 2 ∼ P n � 1 R

So if � P, then � ∪ {∼ P} is inconsistent in SD.
Now assume that � ∪ {∼ P} is inconsistent in SD. Then there is a der-

ivation in SD of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m Q
. .
p ∼ Q

�

�

|=|=
|=

|=
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(where P1, P2, . . . , Pn all members of �). To show that � P, we need only
produce a derivation in which the primary assumptions are members of � and
the last line is P. This is easy. Start with this derivation, but make ∼ P an aux-
iliary assumption rather than a primary assumption. Enter P as a new last line,
justified by Negation Elimination. The result is a derivation of the sort

1 P1

. .
n Pn

n � 1 ∼ P

. .
m Q

. .
p ∼ Q

p � 1 P n � 1 � p ∼ E

Proof of 6.4.10. Assume � ∪ {P} is inconsistent in SD. Then there is
a derivation in SD of the sort

1 P1

.
n Pn

n � 1 P

. .
m Q

. .
p ∼ Q

(where P1, P2, . . . , Pn are members of �). But then there is also a derivation
of the following sort

1 P1

. .
n Pn

n � 1 P

.
m Q
p ∼ Q

p � 1 ∼ P n � 1 � p ∼ I

This shows that if � ∪ {P} is inconsistent in SD, then � ∼ P in SD.�

�
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2. If � is inconsistent in SD then, by the definition of inconsistency in
SD, there is some sentence P such that both P and ∼ P are derivable in SD
from �. By the definition of derivability in SD, there is a derivation in which
all of the primary assumptions are members of � and P occurs in the scope
of only those assumptions, and there is a derivation in which all of the pri-
mary assumptions are members of � and ∼ P occurs in the scope of only those
assumptions. Because all derivations are finite in length, it follows that only a
finite subset of members of � occurs as primary assumptions in each of these
derivations, i.e., P is derivable from a finite subset �� of � and ∼ P is derivable
from a finite subset �� of �. We can extend the derivation of P from �� to a
derivation of P from �� ∪ �� by adding members of �� that are not members
of �� as primary assumptions in that derivation, and we can extend the deri-
vation of ∼ P from �� to a derivation of ∼ P from �� ∪ �� by adding mem-
bers of �� that are not members of �� as primary assumptions in that deriva-
tion. This establishes that both P and ∼ P are derivable from the finite subset
�� ∪ �� of �, and hence that there is a finite subset of � that is inconsistent
in SD.

4. Since every rule of SD is a rule of SD�, every derivation in SD is a
derivation in SD�. So if � P, then � P in SD, by Metatheorem 6.4.1, and
therefore � P in SD�. That is, SD� is complete for sentential logic.

7. a. Since we already know that SD is complete, we need only show
that wherever Reiteration is used in a derivation in SD, it can be eliminated
in favor of some combination of the remaining rules of SD. This was proved
in Exercise 13.c in Section 5.4E. Hence SD* is complete as well.

8. We used the fact that Conjunction Elimination is a rule of SD in
proving (b) for 6.4.11, where we showed that if a sentence P & Q is a mem-
ber of a set �* that is maximally consistent in SD, then both P and Q are mem-
bers of �*.

9. First assume that some set � is truth-functionally consistent. Then
obviously every finite subset of � is truth-functionally consistent as well, for all
members of a finite subset of � are members of �, hence all are true on at
least one truth-value assignment.

Now assume that some set � is truth-functionally inconsistent. If � is
finite, then obviously at least one finite subset of � (namely, � itself) is truth-
functionally inconsistent. If � is infinite, then, by Lemma 6.4.3, � is inconsis-
tent in SD, and, by 6.4.6, some finite subset �� of � is inconsistent in SD—that
is, for some sentence P, �� P and �� ∼ P. Hence, by Metatheorem 6.3.3,
�� P and �� ∼ P, so �� is truth-functionally inconsistent; hence not every
finite subset of � is truth-functionally consistent.

|=|=
��

�

�|=
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