Philosophy 220

Syntax of PL 2

2 States of Variables:

- Bound variable: an occurrence of a variable x in a formula P of PL that is within the scope of an x-quantifier.
- E.g. in '(∃z)Pz', 'z' is a bound variable
- Free variable: an occurrence of a variable x in a formula P of PL that is not bound.

Sentences of PL:

- Remember: All uses of the vocabulary of PL are expressions of PL.
- An expression of PL is a formula of PL if and only if it can be built from the rules of syntax for formulae (p.299).
- A formula of PL is a sentence of PL if and only if it contains no free variable.

Scope of Quantifiers:

- Note that finding the main logical operator of a sentence treats a quantifier like a negation because it's a unary operator.
- For example:
 - (∀x)(Px & Qa) has as its main operator '(∀x)'
 - (∀x)Px & Qa has as its main operator '&'
 - ~(Px & Qa) has as its main operator '~' (formula but not sentence)
 - ~Px & Qa has as its main operator '&' (formula but not sentence)

Substitution Instances of Quantified Sentences:

- The notation 'P(a/x)' indicates a formula P with individual constant a in the place of each occurrence of variable x.
- A substitution instance:
 - 1) may only be formed from a sentence whose main logical operator is a quantifier
 - 2) may only be formed by dropping the main logical operator
- So Pa is a substitution instance of $(\forall x)$ Px
- $(\forall y)$ Pay is **not** a substitution instance of $(\forall y)(\forall x)$ Pxy (rule 2)
- ~Pa is **not** a substitution instance of $\sim(\forall x)$ Px (rule 1)