


When order matters:

When a string of quantifiers are all universal, it does not
matter in what order the variables are listed.

(Vx)(Vy)...

(Vy)(VX)...
When a string of quantifiers are all existential, it does not
matter in what order the variables are listed.

(3x)(Fy)...

(Fy)(3Tx)...
When quantifiers are mixed, the order DOES matter
because it matters which variable goes with which
quantifier.

(Vx)(3y)Pxy # (3x)(Vy)Pxy



Phrasing into English:

(Vx)(Vy)
For all of x and all of ...
For every pair x and y...
(3x)(3y)
There is an x and there is a y such that...
There is a pair x and y such that...

(vx)(3y)
For all of x there is a y such that...

(3x)(Vy)

There is an x such that for each y...



Flashback!

Remember the argument from early in this unit that
looked valid in English but was clearly not valid in SL?
None of David’s friends support Republicans.
Sarah Supports Breitlow, and Breitlow is a Republican.

Sarah is no friend of David’s

We now, at last, have the machinery in PL to symbolize
that argument:

(Vx)[Fxd > ~(3y)(Ry & Sxy)]

Ssb & Rb

~Fsd




To broaden the scope of a quantifier:

Each sentence in the left column is equivalent to the
sentence to its right (so long as x does not occur in P),
and it is often desirable to make the sentences in the
right column so that one can make substitution
instances of them.

For conditional sentences:

(3)AxSP | (Vx)(Ax S P)
(Vx)AxS P | (3x)(Ax >

)
=E09 (3x)(P 5 Ax)
> (Vx)Ax | (vx)(P 5 Ax)




Broadening scope with v, &

1 (Ix)Ax v (Ix)(Ax v P)
2 (Vx)Axv (Vx)(Ax v P)
3 Pv(Ix) (Ix)(P v Ax)
4 Pv(Vx) (Vx)(P v Ax)
1 (Ax)Ax & (3x)(Ax & P)
2 (VX)Ax & (V) (Ax & P)
3 P&(Ix) (F)(P & Ax)
4 P& (Vx) (V) (P & Ax)

Note that such a procedure does not
work for biconditional (=) sentences.




